
ABSTRACT

HE, YUN. Multiscale Signal Processing and Shape Analysis for an Inverse SAR

Imaging System. (Under the direction of Prof. Hamid Krim.)

The great challenge in signal processing is to devise computationally efficient and statisti-

cally optimal algorithms for estimating signals from noisy background and understanding their

contents. This thesis treats the problem of multiscale signal processing and shape analysis for

an Inverse Synthetic Aperture Radar (ISAR) imaging system. To address some of the limita-

tions of conventional techniques in radar image processing, an information theoretic approach

for target motion estimation is first proposed. A wavelet based multiscale method for shape

enhancement is subsequently derived and followed by a regression technique for shape recog-

nition.

Building on entropy-based divergence measures which have shown promising results in

many areas of engineering and image processing, we introduce in this thesis a new generalized

divergence measure, namely the Jensen-Rényi divergence. Upon establishing its properties such

as convexity and its upper bound etc., we apply it to image registration for ISAR focusing as

well as related problems in data fusion.

Attempting to extend current approaches to signal estimation in a wavelet framework,

which have generally relied on the assumption of normally distributed perturbations, we pro-

pose a novel non-linear filtering technique, as a pre-processing step for the shapes obtained

from an ISAR imaging system. The key idea is to project a noisy shape onto a wavelet domain

and to suppress wavelet coefficients by a mask derived from curvature extrema in its scale space

representation. For a piecewise smooth signal, it can be shown that filtering by this curvature

mask is equivalent to preserving the signal pointwise Hölder exponents at the singular points,

and to lifting its smoothness at all the remaining points.

To identify a shape independently of its registration information, we propose matching

two configurations by regression, using notations of general shape spaces and procrustean dis-

tances. In particular, we study the generalized matching by estimating mean shapes in two

dimensions. Simulation results show that matching by way of a mean shape is more robust

than matching target shapes directly.
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CHAPTER

1

Introduction

I
NVERSE Synthetic Aperture Radar (ISAR) is an imaging technique that achieves a

high resolution by exploiting the relative motion between a stationary radar and

a moving target. This is accomplished by coherently processing the returned radar

signals so as to synthesize the effect of a larger aperture array laid out along the target’s

path of motion. One important application of ISAR is as a front-end system for the

purpose of target recognition. The fundamental goal is to detect and recognize objects

of interest in a noisy environment.

A typical ISAR imaging system consists of image acquisition, data fusion, target shape

extraction and enhancement, and finally shape recognition. The main theme of this

thesis is focused on information theoretic imaging and shape analysis. An information

theoretic approach for ISAR image focusing and fusion is first proposed to serve as

a robust stage for image acquisition. A wavelet based multiscale method for shape

enhancement is subsequently derived to estimate a shape in a noisy background which

is followed by a regression technique for shape recognition.

1



CHAPTER 1. INTRODUCTION 2

1.1 Problem Motivation and Formulation

Motivated by the current limitations of conventional techniques in radar image focus-

ing, target shape estimation and recognition, this thesis addresses the following issues.

� Information theoretic approach for ISAR image focusing

The ISAR imagery is induced by the target rotation, which in turn causes time varying

spectra of the reflected signals and blurs the resulting image. When a target exhibits

complex motion, such as rotation and maneuvering, a standard motion compensation

is not adequate to generate an acceptable image for viewing and analysis. In this thesis,

we tackle this problem by an information theoretic approach.

In the work of Woods [1] and Viola [2], mutual information, a basic concept from in-

formation theory, is introduced as a measure of evaluating the similarity between im-

ages. When the two images are properly matched, corresponding areas overlap, and

the resulting joint histogram contains high values for the pixel combinations of the

corresponding regions. When the images are mis-registered, non-matched areas also

overlap and will contribute to additional pixel combinations in the joint histogram. In

case of misregistration, the joint histogram has less significant peaks and is more dis-

persed than that of the correct alignment of images. The registration criterion is hence

to find a transformation such that the mutual information of the corresponding pixel

pair intensity values in the matching images is maximized. This approach is accepted

widely [3] as one of the most accurate and robust registration measures. Following the

same argument, Hero [4] et al. extends the concept to apply Rényi entropy to measure

the joint histogram as a dissimilarity metric between images.

Inspired by this previous work, and looking to address their limitation in often difficult

imagery, we introduce in this paper a novel generalized information theoretic measure,

namely the Jensen-Rényi divergence and defined in terms of Rényi entropy [5]. Jensen-

Rényi divergence is defined as a similarity measurement among any finite number of

weighted probability distributions. Shannon mutual information is a special case of

the Jensen-Rényi divergence. This generalization provides us an ability to control the

measurement sensitivity of the joint histogram.
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The objective of ISAR image registration is to estimate the target motion during the

imaging time. Let T(l;�;) be a Euclidean transformation with translational parameter

l = (lx; ly), rotational parameter � and scaling parameter . Given two ISAR image

frames f1 and f2, the estimates of target motion parameters (l�; ��; �) are given by

(l�; ��; �) = arg max
(l;�;)

DJR!� (f1; T(l;�;)f2) (1.1)

where DJR!�
(�) is an induced similarity measure based on the proposed Jensen-Rényi

divergence of order � and weight !, which is maximal when f1 matches T(l;�;)f2. As the

radar tracks the target, the reflected signal is continuously recorded during the imaging

time. By registering a sequence of consecutive image frames, ffigNi=0, the target motion

during the imaging time can be estimated by interpolating f(li; �i; i)gNi=1. Based on the

estimated trajectory of the target, translational motion compensation (TMC), and rota-

tional motion compensation (RMC) [6] can be used to generate a focused image of the

target.

� Multiscale Signal Enhancement: Beyond the Normality and Independence As-

sumption

To fulfill the goal of an ISAR imaging system of recognizing objects of interest in a noisy

environment, shape enhancement is required and constitutes a crucial step. Donoho

and Johnstone [7] first showed that effective noise suppression may be achieved by

wavelet shrinkage, in comparison to traditional linear methods. Given the noisy wavelet

coefficients, i.e. the true wavelet coefficients plus a noise term, and assuming that one

has knowledge of the true wavelet coefficients, an ideal filter sets a noisy coefficient to

zero if the noise variance �2 is greater than the square of the true wavelet coefficient;

otherwise the noisy coefficient is kept. In this way, the mean square error of this ideal

estimator is the minimum of �2 and the square of the coefficient. Under the assumption

of i.i.d. normal noise, it can shown that a soft thresholding estimator achieves a risk at

most O(logM) times the risk of this ideal estimator, where M is the length of the obser-

vation.

To choose an appropriate threshold, Donoho and Johnstone [7] have taken a minimax



CHAPTER 1. INTRODUCTION 4

approach to characterize the signal, and they proved that the estimation risk is close to

the minimax risk by setting a threshold

T = �
p
2 logeM:

Krim and Pesquet [8] have given an alternative derivation for this threshold, using

Rissanen’s Minimum Description Length (MDL) criterion [9] and the assumption of

normally distributed noise. The threshold T increase with M is due to the tail of the

Gaussian distribution, which tends to generate larger noise coefficients when sample

size increases. This threshold is not optimal, and in general a lower threshold reduces

the risk. To refine the threshold, a SureShrink [10] procedure is proposed. Sureshrink

calculates thresholds by the principle of minimizing the Stein unbiased estimate of risk

for threshold estimates. SureShrink is also based on the assumption of i.i.d. normal

noise, which does not hold for ISAR applications. For non-Gaussian type of noise,

Neumann [11], Averkamp and Houdre [12] studied the choice of thresholds by having

recourse to asymptotics. Wavelet thresholding theory is, however, based on the as-

sumption that we know the statistics of the noise to determine an adequate threshold.

This makes the algorithm less flexible and less adaptive to different scenarios which can

result in an even worse reconstruction. Compensation for the lack of a prior knowledge

of the noise statistics may be handled by adopting the minimax principle [13] upon de-

riving the worst case noise distribution.

Points of sharp variations are often among the most important features for analyzing

properties of transient piecewise smooth signals. To characterize the singular struc-

tures, Hölder exponents [14] provide a pointwise measure of a function over a time

interval. Due to the pioneering work by Jaffard [15] and Meyer [16], it can be shown

that a local signal singularity of a function is characterized by the decay of its wavelet

transform amplitude across scales.

In this thesis, a novel nonlinear filtering technique is proposed. We assume that a prior

knowledge about pointwise smoothness measure of the signal is known or can be ex-

tracted. However, this smoothness property of the signal is corrupted by additive noise,

which in general has a uniform Hölder exponent less than 1. We view the denoising
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problem as one of carefully controlling the Hölder exponents of measured data with a

goal of extracting the signal portion with some smoothness fidelity to the original. Let

f 2 L2(R). We consider an additive noise model. The measured data are

Z(t) = f(t) +N(t); (1.2)

where the noise is modeled by the realization of a zero mean random process N . De-

note �f (�) and �N(�) characterize the pointwise Hölder exponent of f(�) and N(�) re-

spectively. A ideal operator T satisfies the following two conditions:

! f̂ = TZ admits �f (�) as its pointwise Hölder exponent

! V (t) = Z(t)� f̂(t) admits �N(�) as its pointwise Hölder exponent

This non-linear filter is optimal in the sense of recovering the smoothness of the true

underlying signal.

� Information theoretic approach for multiscale image fusion

With the development of new imaging sensors arises the need for image processing

techniques that can effectively fuse images from different sensors into a single coherent

composition for interpretation. In order to make use of inherent redundancy and ex-

tended coverage of multiple sensors, we propose a multiscale approach for pixel level

image fusion. The ultimate goal is to reduce human/machine error in detection and

recognition of objects.

Over the past two decades, a wide variety of pixel-level image fusion algorithms has

been developed. These techniques may be classified into linear superposition, logical

filter [17], mathematical morphology [18], image algebra [19] [20], artificial neural net-

work [21], and simulated annealing [22] methods. Each of these algorithms focuses on

the fact that the fused image reveals new information concerning features that can not

be perceived in individual sensor images. However, some useful information has been

discarded since each fusion scheme tends to emphasize different attributes of the im-

age. Luo [23] provides a detailed review of these techniques.

Inspired by the fact that the human visual system processes and analyzes image in-

formation at different scales, researchers recently proposed a multiscale based fusion
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method which is widely accepted [24] as one of the most effective techniques for image

fusion. Wavelet theory has played a particularly important role in multiscale analysis.

A number of papers [25] [26] [27] have addressed fusion algorithms based on the or-

thogonal wavelet transform. A major drawback in the recent pursuit of wavelet-based

fusion algorithms is due to a lack of a good fusion scheme. Most fusion rules so far

proposed are in essence more or less similar to “choose max” scheme proposed by Burt

[28], which introduces a significant amount of high frequency noise due to the sudden

switch of the fused wavelet coefficient to that which is maximum of the source. This

high frequency noise is particularly undesirable to visual perception.

In this thesis, we apply a biorthogonal wavelet transform to the pixel level image fu-

sion. It is possible to construct smooth biorthogonal wavelets of compact support

which are either symmetric or antisymmetric. At the exception of a Haar wavelet, it

has been shown [29] that symmetric orthogonal wavelets are impossible to construct.

Symmetric or antisymmetric wavelets are synthesized with perfect reconstruction fil-

ters having a linear phase. This is a desirable property for image fusion applications.

Unlike the “choose max” type of selection rules, we propose an information theoretic

fusion scheme. For each pixel in a source image, a vector consisting of wavelet coef-

ficients at that pixel position across scales is formed to indicate the “activity” of that

pixel. We denote these indicator vectors of all the pixels in a source image as its activ-

ity map. To make a reasonable comparison among activity indicator vectors, we apply

our newly proposed divergence measure, Jensen-Rényi divergence, which is defined in

terms of Rényi entropy.

Let f1; f2; :::; fn : Z2 ! R be digital images of the same scene taken from different sen-

sors. Denote

Wfi = fd1i (j;n); d2i (j;n); d3i (j;n); ai(L;n)g0<j�L;n2Z2; i = 1; 2; :::n

as a biorthogonal wavelet image representation of fi. Our fusion scheme cab be formu-

lated as the following optimization problem:

Wf = arg min
Wf2F

8<
:

nX
i=1

(

LX
j=1

X
2jn2D0

jWf(j;n)�Wfi(j;n)j2)�
LX
j=1

X
2jn2D1

jWf(j;n)j2
9=
; ;
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where D0 is the set of pixels whose activity patterns are similar in all the source images,

while D1 is the set of pixels whose activity patterns are different. F is the set of all the

images f whose wavelet transform satisfies

min(Wfi(j;n)) � Wf(j;n) � max(Wfi(j;n));

for any 0 < j � L and n 2 Z
2. This constraint makes sure that the solution stays in the

closure of F , i.e., no image outside the scenario we are contemplating.

� Shape recognition

The geometrical description of an object can be decomposed into registration and shape

information. For example, an object’s location, rotation and size could be the registra-

tion information and the geometrical information that remains is the shape of the object.

An object’s shape is invariant under registration transformations and two objects have

the same shape if they can be registered to match exactly.

The pioneers of this topic of general shape and registration analysis are Kendall [30]

and Bookstein [31]. Some reference and reviews include Goodall [32], Kent [33], Dry-

den and Mardia [34].

The difficulty of target recognition in ISAR imagery is to identify a target shape in the

presence of interference regardless of its position, scale and orientation. In an effort to

overcome this difficulty, we describe matching of two configurations in Euclidean and

affine shape spaces using regression techniques, and we further address robustness is-

sues and matching by estimation.

1.2 Thesis Organization and Main Contributions

This section summarizes the organization of the remaining thesis, along with a brief

description of the main contributions.
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Chapter 2. Inverse Synthetic Aperture Radar Imaging System

Inverse Synthetic Aperture Radar System transmits electro-magnetic waves to a target

and coherently integrates the returned signals to synthesize the effect of a larger aper-

ture array. The spatial distribution of the reflectivity density of a target, referred to as

the image of the target, is usually mapped onto a range-azimuth plain. In this chapter,

we briefly introduce the range and azimuth processing, and necessary procedures to

construct an ISAR image from reflected and measured signals.

Chapter 3. Inverse SAR Image Registration: An Information Theoretic Approach

In this chapter, a new generalized divergence measure, Jensen-Rényi divergence, is pro-

posed. Some properties such as convexity and its upper bound are derived. Based on

the Jensen-Rényi divergence, we propose a new approach to the problem of ISAR image

registration. Our approach applies Jensen-Rényi divergence to measure the statistical

dependence between consecutive ISAR image frames, which would be maximal if the

images are geometrically aligned. Simulation results demonstrate that the proposed

method is efficient and effective in tracking the trajectory of a target. The major results

of this chapter have been published in [35], [36] and [37].

Chapter 4. Introduction to Multiscale Analysis

In this chapter, we briefly review the concept of multiscale analysis. We study the prop-

erties of an operator which approximates a signal at a given resolution. We show that

the difference of a signal at different resolutions can be extracted by decomposing the

signal on a wavelet orthonormal basis. The development of orthonormal wavelet bases

has opened a new bridge between approximation theory and signal processing. In the

last section of this chapter, we discuss a hard/soft threshold estimator and SureShrink

in particular detail, and illustrate its adaptivity to unknown smoothness via wavelet

shrinkage.

Chapter 5. Multiscale Signal Enhancement: Beyond the Normality and Indepen-

dence Assumption

Most existing approaches to denoising or signal enhancement in a wavelet-based frame-

work have generally relied on the assumption of normally distributed and independent
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perturbations. In practice, this assumption is often violated and sometimes, even the

prior information of a probability distribution of the noise process is unavailable. To

relax this assumption, we propose a novel non-linear filtering technique in this chapter.

The key idea is to project a noisy signal onto a wavelet domain and to suppress wavelet

coefficients by a mask derived from its curvature extrema in a scale space representa-

tion. For a piecewise smooth signal, it can be shown that filtering by this curvature

mask is equivalent to preserving the signal pointwise Hölder exponents at the singular

points and lifting its smoothness at all the remaining points. The major results of this

chapter have been published in [38] and [39].

Chapter 6. A Multiscale Approach for Pixel Level Image Fusion

Pixel level image fusion refers to the processing and synergistic combination of infor-

mation gathered by various imaging sources to provide a better understanding of a

scene. We formulate the image fusion as an optimization problem and propose an in-

formation theoretic approach in a multiscale framework to solve it. A biorthogonal

wavelet transform of each source image is first calculated, and the new fusion algo-

rithm applies Jensen-Rényi divergence to construct a composite of wavelet coefficients

according to the measurement of the information patterns inherent in source images.

Experimental results on fusion of multi-sensor navigation images, multi-modality med-

ical images, multi-spectral remote sensing images, and multi-focus optical images are

presented to illustrate the proposed fusion scheme. The major results of this chapter

have been published in [40].

Chapter 7. Shape Recognition

The geometrical description of an object can be decomposed into registration and shape

information. The goal of shape recognition is to identify a shape regardless of its reg-

istration information. In this chapter, we describe the matching of two configurations

using a regression technique, making connections with general shape spaces and pro-

crustean distances. In particular, we study the generalized matching by estimation in

Euclidean and affine shape spaces. Simulation results show that matching by way of a

mean shape is more robust than matching target shapes directly.
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Chapter 8. Conclusions and Discussions

In this chapter, we briefly summarize contributions in this thesis and present the overall

conclusions which can be drawn from the results of our research. We also present some

suggestions for extending this work.
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2
Inverse Synthetic

Aperture Radar Imag-

ing System

Ψ

Target Area

Synthetic Aperture Size

Figure 2.1: Spotlight SAR

I
NVERSE Synthetic Aperture Radar (ISAR) is a microwave imaging system capable

of producing high resolution imagery from data collected by a relatively small an-

tenna. ISAR can be explained in terms of spotlight SAR [6], as illustrated in Figure (2.1).

Spotlight SAR is obtained as the radar antenna constantly tracks a particular target area

of interest. The same data would be collected if the radar were stationary and the target

area were rotating. The target rotation relative to the radar is used to generate the target

image. This is precisely the idea of ISAR.

Figure (2.2) illustrates the data collection from an air target by a stationary radar as

11
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Ψ

R

Rotating Target Moving Radar Stationary TargetStationary Radar

-L/2

L/2

Ψ R

(a) (b)

Figure 2.2: SAR/ISAR Equivalence: (a) ISAR; (b) SAR equivalence

the target rotates through an angle 	. The spotlight SAR equivalent geometry is the

moving radar of Figure (2.2b), collecting the same data while flying a circular segment

around an identical but non-rotating target. The SAR aperture length L in Figure (2.2b)

corresponds to integration angle 	 in figure (2.2a).

2.1 Range Processing

ISAR imagery represents reflectivity magnitude associated with the illuminated target.

In the terminology of radar signal processing, the direction of radar Line of Sight (LOS)

is referred to as range and the direction orthogonal to range is referred to as cross-range

or azimuth.

Range is determined by measuring the time it takes for a transmitted signal to travel

a round-trip distance between radar and target. The ability of the radar to determine

the range of a particular scatterer in a vicinity of other scatterers depends on the range

resolution.

Target reflectivity density is a function of frequency and viewing angle, and the as-

sumption is that it does not vary significantly over the bandwidth of transmitted sig-

nal, which is considered narrow compared to the carrier frequency, or over the narrow
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range of radar viewing angles.

Consider the simplified geometry shown in Figure (2.3). An antenna located at the ori-

gin illuminates a line of scatterers centered at x = R, having length W and reflectivity

q : R ! C . Let the transmitted signal ~s(t) be a pulse of duration Tp and bandwidth �

given by

~s(t) = Refs(t)ej2�f0tgw( t
Tp

) (2.1)

where s(t) is the baseband equivalent signal of ~s(t), and

w(t) =

8<
: 1; jtj � 1

2

0; otherwise:
(2.2)

Then, ignoring the round-trip attenuation, the returned signal can be represented as the

convolution of target reflectivity density with the transmitted signal

r(x) = q(x) ? s(2x=c) (2.3)

where c is the speed of light, and 2x=c is the round trip delay.

An estimate of the reflectivity density can be obtained by passing r(x) through a matched

filter whose impulse response is hr(x) = s�(�2x=c). Therefore, the estimate of q(x) is

q̂(x) = r(x) ? s�(�2x=c)
= q(x) ? [s(2x=c) ? s�(�2x=c)]: (2.4)

Let’s define

�(t) = s(t) ? s�(�t) (2.5)

then we can rewrite (2.4) as

q̂(x) = q(x) ? �(2x=c) (2.6)

Since the transmitted pulse usually has a large time-bandwidth product, �(t) can be

approximated by a sinc(�) function. The estimate of target reflectivity density may thus

be represented as

q̂(x) = q(x) ? sinc(2��x=c): (2.7)
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R-W/2 R+W/2

q(x)

x

Antenna

R

Figure 2.3: Simplified geometry for range processing.

The range resolution is hence given by [41]

Ær =
c

2�
: (2.8)

2.2 Cross-Range Processing

To gain a basic understanding of the cross-range resolving mechanism in ISAR, let’s

consider Figure (2.4) with a line of scatterers having the reflectivity q(y). As the radar

is moving from z = �L=2 to z = L=2, the two-way phase advance at cross-range y is

	y(z) � 4�

�
dr =

4�

�
z � sin (2.9)

For the case of y � R and L � R, sin approaches y=R and z approaches R�;�	=2 <
� < 	=2, Equation (2.9) can be re-expressed in terms of angle �

	y(�) � 4�

�
R�

y

R
=

4�

�
y�; � 	

2
< � <

	

2
: (2.10)

Then, the echo response from the line scatterers at � is given by

g(�) =

Z +1

�1
q(y)ej

4�
�
�ydy: (2.11)

An estimate of the reflectivity density can be obtained by integrating the echo response
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z y

Antenna

L/2

-L/2

x

Ψ

dr

R

 q (y)
γ

Figure 2.4: Simplified geometry for cross-range processing

over a small integration angle 	,

q̂(y) =

Z +	

2

�	

2

g(�)e�j
4�
�
�yd�

=

Z +1

�1
g(�)w(

�

	
)e�j

4�
�
�yd�

= 	q(y) ? sinc(
2�

�
	y); (2.12)

where w(�) is the window function defined in equation (2.2). Therefore the cross-range

resolution is given by [6]

Ærc =
�

2	
: (2.13)

2.3 Maximum Integration Angle

The maximum integration angle for ISAR imaging system before uncorrected rotation

produces defocusing in cross-range can be defined in terms of allowable two-way phase

deviation. We assume that the radar is in the far field of the target so that no significant

range deviation exists over the target’s cross-range extent. What remains is the range

deviation produced when a scatterer first approaches and then recedes from the radar
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Figure 2.5: Unfocused ISAR geometry

during rotation. As in Figure (2.5), for a small 	,

r2 + (
r	

2
)2 = (r + Ær)2 (2.14)

Solving for 	 with r >> Ær, we have

	 = (
8Ær

r
)1=2 (2.15)

Assume a maximum allowable two-way phase deviation of �=8 as a criterion for focus,

the corresponding allowable range deviation Ær is �=32. The maximum integration

angle [6] then becomes

	max =
1

2

r
�

r
: (2.16)

The cross-range resolution in unfocused ISAR is limited by the maximum integration

angle 	max, and a Focused Aperture ISAR is desirable for a larger integration angle. Let’s

consider the echo signal from scatterer 1, located at (r; � = 0) when t = 0 as shown in

Figure (2.5), the phase advance term at time t is

	1(t) = �4�

�
Ær = �4�

�

(!rt)2

2r
(2.17)
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where the target rotates at a constant angular rotation rate !. The two way phase ad-

vance for scatterer 2, which is located at (r;��) when t = 0, is

	2(t) = �4�

�

(!t� �)2r

2
: (2.18)

A focused aperture for ISAR is achieved by subtracting 	1(t) from 	2(t), and we have

	y(t) = 	2(t)�	1(t) = �4�

�
[�!ty + y2

2r
] (2.19)

where y = r�. Define the target rotation angle � = !t, then we can rewrite Equation

(2.19) in terms of �,

	y(�) = �4�

�
[�y�+

y2

2r
] (2.20)

Equating (2.20) with (2.11), we obtain the range resolution [6]

Ærc =
1

2

�

!T
: (2.21)

where T is the integration time. Equation (2.21) for focused ISAR with !T = 	 is

the same as the cross-range resolution (2.13) for an unfocused, small integration angle

ISAR.

The ISAR imaging is induced by target motion. During the imaging time, the scatterers

must remain in their range cells. Reflectivity density function won’t remain the same

over a wide range of radar viewing angles. Therefore we can not use an arbitrary large

integration angle in Equation (2.21). Optimal Integration Angle [35] need to be estimated

to achieve the highest possible cross-range resolution and prevent defocusing in the

image.

2.4 Range Doppler Imaging

The architecture of the ISAR image formation is illustrated in Figure (2.6), with a stepped-

frequency (SF) waveform. Other wide-band radar waveforms, such as a linear FM

chirp pulse can also be used but with different range compression techniques. Using



CHAPTER 2. INVERSE SAR IMAGING SYSTEM 18

f

t

N
 B

ur
st

s

IF
T

t

f

N
 B

ur
st

s

1-
D

...

1-
D

 F
FT

R
ec

on
st

ru
ct

ed
 I

SA
R

 I
m

ag
e

R
an

ge
-D

op
pl

er
 P

ro
ce

ss
in

g
M

 p
ul

se
 S

te
pp

ed

...

M
 R

an
ge

C
el

ls

N
 F

re
qu

en
cy

 S
ig

na
tu

re

T
ra

ns
m

itt
ed

Fr
eq

ue
nc

y 
W

av
ef

or
m

R
ec

ei
ve

d
Si

gn
al

Si
gn

al

T
ar

ge
t

Figure 2.6: ISAR imaging system architecture

SF waveforms, a radar typically transmits a sequence of N bursts. Each burst consists

of M narrow-band pulses. Within each burst, the center frequency of each successive

pulse is increased by a constant frequency step �f . The total bandwidth of the burst,

i.e., � = M�f , determines the radar range resolution. The total number of bursts for a

given imaging time determines the Doppler or cross-range resolution.

To form a radar image, N bursts of returned signals first pass through a quadrature

demodulator to obtain in-phase and quadrature signals at baseband. An M � N array

of complex data, fGm;ng0�m�M�1; 0�n�N�1, is constructed to represent an unprocessed

spatial frequency signature of the target. The radar processor uses the frequency signa-

tures as the raw data to perform range compression and standard motion compensa-
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Figure 2.7: ISAR Image of A Small Boat

tion. Range compression functions as a matched filter to resolve range. For SF signals,

the range compression performs an M -point IFT to each of the N received frequency

signatures

r = F�1
m (G) (2.22)

where F�1
m denotes the IFT operation with respect to variable m. All together, N range

profiles, each containing M range cells, are thus obtained.

Along each range cell, N range profiles constitute a time history series of the target.

The Fourier imaging approach applies a FFT to the time history series and generates a

N -point Doppler spectrum, or Doppler profile. By combining the N Doppler spectra at

M range cells, a M �N image is formed

I = Fn(r) (2.23)

where Fn denotes a FFT operation with respect to variable n. The radar image I is

hence the target’s reflectivity function mapped onto the range-Doppler plane. Figure

(2.7) shows such an ISAR image.
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CHAPTER

3

Inverse SAR Image

Registration: An In-

formation Theoretic

Approach

E
NTROPY based divergence measures have shown promising results in many ar-

eas of engineering and image processing. In this paper, a new generalized di-

vergence measure, Jensen-Rényi divergence, is proposed. Some properties such as con-

vexity and its upper bound are derived. Based on the Jensen-Rényi divergence, we

propose a new approach to the problem of ISAR (Inverse Synthetic Aperture Radar)

image registration. The goal of ISAR image registration is to estimate the target motion

during the imaging time. Our approach applies Jensen-Rényi divergence to measure

the statistical dependence between consecutive ISAR image frames, which would be

maximal if the images are geometrically aligned. Simulation results demonstrate that

the proposed method is efficient and effective.

3.1 Introduction

Image registration is an important problem in computer vision [42] [43], remote sens-

ing data processing [44] [45] and medical image analysis [46] [47]. The goal of image

registration is to find a spatial transformation such that a similarity metric achieves its

maximum between two or more images taken at different times, from different sensors,

or from different viewpoints.

21
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One such example which is the primary interest in the sequel is Inverse Synthetic Aper-

ture Radar (ISAR) imaging. ISAR is a microwave imaging system capable of producing

high resolution imagery from data collected by a relatively small antenna. ISAR imag-

ing is induced by target motion, which unfortunately also blurs the resulting image.

After a conventional ISAR translational focusing process, image registration can be ap-

plied to estimate the target rotational motion parameter, upon which polar re-formating

may be used to achieve a higher resolution image. Related work in this area includes

the image registration in interferometric SAR processing by Gabriel [48], Li [49] and

Lin [50] and Fornaro [51].

Over the last three decades, a wide variety of registration techniques have been devel-

oped for different applications. These techniques can be classified [52] into correlation

methods, Fourier methods, landmark mapping, and elastic model-based matching.

Given two images f1; f2 : I � I 2 R
2 ! R, correlation methods [53] calculate the

normalized two-dimensional cross-correlation function C(f1; T(l;�;)f2) between f1 and

f2, where T is a Euclidean transformation with translational parameter l = (lx; ly), rota-

tional parameter � and scaling parameter . The registration problem may be succinctly

stated as

(l�; ��; �) = argmax
l;�;

C(f1; T(l;�;)f2): (3.1)

The correlation methods are generally limited to registration problems in which the

image is misaligned by only a small rigid transformation. In addition, the peak of the

correlation may not be clearly discernible in the presence of noise. Fourier methods [54]

are the frequency domain equivalent of the correlation methods. Fourier methods make

use of the translation property of the Fourier transform and search for the optimal spec-

trum matching between two images. Since rotation is invariant under a Fourier trans-

formation, rotating an image merely rotates the Fourier transform of that image [55].

If we denote F1; F2 as the two-dimensional Fourier transform of f1; f2 respectively, we

obtain the phase of the cross-power spectrum rotated by � as

P�(!x; !y) =
F1(!x; !y) T�F2(!x; !y)

jF1(!x; !y) T�F2(!x; !y)j : (3.2)
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To determine the rotational parameter �, one proceeds to maximize the two-dimensional

inverse Fourier transformation of P�(!x; !y), i.e., a cross-correlation which is as peaked

or as impulsive as possible, and the location of that impulse is exactly the translational

parameter l. In light of their equivalence to the correlation methods, Fourier methods

are also limited to registration problems with a small rigid transformation. If there

exists spatially local variation, then both the correlation methods and the Fourier meth-

ods would fail. For cases of unknown misalignment type, landmark mapping tech-

niques [56] and elastic model-based matching [57] [58] may be used to tackle the regis-

tration problem. Landmark mapping techniques extract feature points from a reference

image and a target image respectively, then apply piecewise interpolation to compute

a transformation to map the feature point sets from the reference image to the target

image. Landmark based methods are usually labor intensive and their accuracy de-

pends on the degree of reliability of the feature points. Instead of finding the mapping

between the feature point sets, elastic model-based matching methods model the dis-

tortion in the image as the deformation of an elastic material. The resulting registration

transformation is the deformation with a minimal bending and stretching energy. Prac-

tical elastic model-based methods [59] are based on computation expensive iterative

algorithms, and the choice of feature points plays a crucial role in its performance.

In the work of Woods [1] and Viola [2], mutual information, a basic concept from in-

formation theory, is introduced as a measure of evaluating the similarity between im-

ages. When the two images are properly matched, corresponding areas overlap, and

the resulting joint histogram contains high values for the pixel combinations of the

corresponding regions. When the images are mis-registered, non-matched areas also

overlap and will contribute to additional pixel combinations in the joint histogram. In

case of misregistration, the joint histogram has less significant peaks and is more dis-

persed than that of the correct alignment of images. The registration criterion is hence

to find a transformation such that the mutual information of the corresponding pixel

pair intensity values in the matching images is maximized. This approach is accepted

widely [3] as one of the most accurate and robust registration measures. Following the
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same argument, Hero [4] et al. extends the concept to apply Rényi entropy to measure

the joint histogram as a dissimilarity metric between images.

Inspired by this previous work, and looking to address their limitation in often dif-

ficult imagery, we introduce in this chapter a novel generalized information theoretic

measure, namely the Jensen-Rényi divergence and defined in terms of Rényi entropy

[5]. Jensen-Rényi divergence is defined as a similarity measurement among any finite

number of weighted probability distributions. Shannon mutual information is a special

case of the Jensen-Rényi divergence. This generalization provides us an ability to con-

trol the measurement sensitivity of the joint histogram, to ultimately result in a better

registration accuracy.

In the next section, we give a brief statement of the problem. In section 3.3, we in-

troduce the Jensen-Rényi divergence and its properties. In Section 3.4, we derive the

performance upper bounds of the Jensen-Rényi divergence in terms of the Bayes error

and also of the asymptotic error of the Nearest Neighbor Classifier. Section 3.5 describes

the concepts of image registration with the Jensen-Rényi divergence. Numerical exper-

iments for ISAR image registration is demonstrated in Section 3.6. Finally, we provide

concluding remarks in Section 3.7.

3.2 Problem Statement

ISAR imagery is induced by target motion, and the target motion in turn causes time-

varying spectra of the received signals. Motion compensation has to be applied to

obtain a high resolution image. The objective of ISAR image registration is to estimate

the target motion during the imaging time. Let T(l;�;) be a Euclidean transformation

with translational parameter l = (lx; ly), rotational parameter � and scaling parameter

. Given two ISAR image frames f1 and f2, the estimates of target motion parameters

(l�; ��; �) are given by

(l�; ��; �) = arg max
(l;�;)

DJR!�
(f1; T(l;�;)f2) (3.3)
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where DJR!� (�) is an induced similarity measure based on Jensen-Rényi divergence of

order � and weight !, which is maximal when f1 matches T(l;�;)f2. As the radar tracks

the target, the reflected signal is continuously recorded during the imaging time. By

registering a sequence of consecutive image frames, ffigNi=0, the target motion during

the imaging time can be estimated by interpolating f(li; �i; i)gNi=1. Based on the esti-

mated trajectory of the target, translational motion compensation (TMC), and rotational

motion compensation (RMC) [6] can be used to generate a focused image of the target.

3.3 The Jensen-Rényi Divergence

Let k 2 N and X = fx1; x2; : : : ; xkg be a finite set with a probability distribution p =

(p1; p2; : : : ; pk), i.e.
Pk

j=1 pj = 1 and pj = P (xj) � 0, where P (�) denotes the probability.

Rényi entropy is a generalization of Shannon entropy [60], and is defined as

R�(p) =
1

1� �
log

kX
j=1

p�j ; � > 0 and � 6= 1: (3.4)

For � > 1, the Rényi entropy is neither concave nor convex.

For � 2 (0; 1), it is easy to see that Rényi entropy is concave, and tends to Shannon

entropy H(p) as � ! 1. It can easily be verified that R� is a non-increasing function of

�, and hence

R�(p) � H(p); 8� 2 (0; 1): (3.5)

In the sequel, we will restrict � 2 (0; 1), unless otherwise specified, and will use a base

2 logarithm, i.e., the measurement unit is bits.

As shown in Figure 3.1, uncertainty is at a minimum when Shannon entropy is used,

and it increases as � decreases. Rényi entropy attains a maximum uncertainty when �

is equal to zero.

Definition 3.1 Let p1;p2; : : : ;pn be n probability distributions onX and! = (!1; !2; : : : ; !n)

be a weight vector such that
Pn

i=1 !i = 1 and !i � 0. The Jensen-Rényi divergence is defined
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Figure 3.1: Shannon and Rényi entropy of Bernoulli distribution p = (p; 1 � p) for

different values of �

as

JR!� (p1; : : : ;pn) = R�

 
nX
i=1

!ipi

!
�

nX
i=1

!iR�(pi);

where R�(p) is the Rényi entropy, � > 0 and � 6= 1.

Using the Jensen inequality, it is easy to check that the Jensen-Rényi divergence is non-

negative for � 2 (0; 1). It is also symmetric and vanishes if and only if the probability

distributions p1;p2; : : : ;pn are equal, for all � > 0. Figure 3.2 illustrates the three di-

mensional representation of the Jensen-Rényi divergence for two Bernoulli probability

distributions, with � = 0:7.

When � ! 1, the Jensen-Rényi divergence is exactly the generalized Jensen-Shannon

divergence [61].

Unlike other entropy-based divergence measures such as the well-known Kullback di-

vergence, the Jensen-Rényi divergence has the advantage of being symmetric and gen-

eralizable to any finite number of probability distributions, with a possibility of assign-

ing weights to these distributions.
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Figure 3.2: 3D representation of Jensen-Rényi divergence JR!� (p; q), p = (p; 1 � p),

q = (q; 1� q), � = 0:7, ! = (0:5; 0:5).

The following result establishes the convexity of the Jensen-Rényi divergence of a set

of probability distributions.

Proposition 3.1 For � 2 (0; 1), the Jensen-Rényi divergence JR!� is a convex function of

p1;p2; : : : ;pn.

Proof: see Appendix.

The following result, in a sense, clarifies and justifies calling upon the Jensen-Rényi

divergence as a measure of disparity among probability distributions.

Proposition 3.2 The Jensen-Rényi divergence achieves its maximum value when p1;p2; : : : ;pn

are degenerate distributions.

Proof: The domain of JR!� is a convex polytope in which the vertices are degenerate

probability distributions. That is, the maximum value of the Jensen-Rényi divergence

occurs at one of the degenerate distributions.

Since the Jensen-Rényi divergence is a convex function of p1;p2; : : : ;pn, it achieves its
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maximum value when the Rényi entropy function of the !-weighted average of degen-

erate probability distributions, achieves its maximum value as well.

Assigning weights !i to the degenerate distributions �1;�2; : : : ;�n, �i = fÆijg; j =

1; 2; : : : k, the following upper bound

JR!� � R�

 
nX
i=1

!i�i

!
; (3.6)

which easily falls out of the Jensen-Rényi divergence, may be used as a starting point.

Without loss of generality, consider the Jensen-Rényi divergence with equal weights

!i = 1=n for all i, and denote it simply by JR�, to write

JR� � R�

 
nX
i=1

(�i=n)

!

=
1

1� �
log

kX
j=1

� nX
i=1

(Æij=n)
��

= R�(a) +
�

�� 1
log(n); (3.7)

where

a = (a1; a2; : : : ; ak) such that aj =

nX
i=1

Æij: (3.8)

Since �1;�2; : : : ;�n are degenerate distributions, then we have
Pk

j=1 aj = n, 8k � n.

From (3.7), it is clear that JR� achieves its maximum value when R�(a) does as well.

In order to maximizeR�(a), the concept of majorization [62] will be used. Let (x[1]; x[2]; : : : ; x[k])

denote a non-increasing ordering of the components of a vector x = (x1; x2; : : : ; xk).

Definition 3.2 Let a and b 2 R
k , a is said to be majorized by b, written a � b, if8<

:
Pk

j=1 a[j] =
Pk

j=1 b[j]P`
j=1 a[j] �

P`
j=1 b[j]; ` = 1; 2; : : : ; k � 1:

Definition 3.3 A real-valued function � defined on a set 
 � R
k is said to be Schur-concave

on 
 if

a � b =) �(a) � �(b); 8a; b 2 
:
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Define the function g(aj) = a�j , � 2 (0; 1), on an interval J � R. It is clear that g is a

concave function on J , thus �(a) =
Pk

j=1 g(aj) is Schur-concave [62] on Jk, that is

a � b =)
kX

j=1

g(aj) �
kX

j=1

g(bj):

Since log(�) is an increasing function, and � 2 (0; 1), it follows that

a � b =) R�(a) � R�(b):

Therefore, R�(�) is a Schur-concave function. The following result establishes the max-

imum value of the Jensen-Rényi divergence.

Proposition 3.3 Let p1;p2; : : : ;pn be n probability distributions with

pi = (pi1; pi2; : : : ; pik);
Pk

j=1 pij = 1; pij � 0:

If k � r (mod n), 0 � r < n, then

JR� � 1

1� �
log(k � r); (3.9)

where � 2 (0; 1).

Proof: It is clear that the vector

g = (

k�rz }| {
n=(k � r); : : : ; n=(k � r);

rz }| {
0; : : : ; 0)

is majorized by the vector a defined in (3.8). Hence, R�(a) � R�(g). Invoking Equation

(3.7) completes the proof.

According to Proposition 3.3, and for the special case of k � 0 (mod n) the following

inequality holds

JR�(p1;p2; : : : ;pn) � log(k):

It is of special interest for the Jensen-Rényi divergence between the histograms pa and

pb with weights f�; 1� �g; � 2 [0; 1]. Let

p = (1� �=2)pa + (�=2)pb;
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then the corresponding Jensen-Rényi divergence can then be expressed as a function of

�

JR�(�) = R�(p)� R�((1� �)pa + �pb) +R�(pa)

2
:
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Figure 3.3: Jensen-Rényi divergence as a function of �

Proposition 3.4 If pa 6= pb then the Jensen-Rényi divergence JR�(�) achieves its maximum

value when � = 1.

Proof: see Appendix.

Figure (3.3) illustrates the Jensen-Rényi divergence as a function of � when pa = (0:3; 0:2; 0:5),

pb = (0:2; 0:4; 0:4) and � = 0:7.

3.4 The Jensen–Rényi Divergence: Performance Bounds

In this section, performance bounds of the Jensen-Rényi divergence in terms of the

Bayes error and also of the asymptotic error of the NN classifier are derived.

Let X = fx1;x2; :::xkg be a set of feature vectors and C = fc1; c2; : : : ; cng be a set of n

classes. By a classifier we mean a function f : X ! C that classifies a given feature
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vector (pattern) x 2 X to the class c = f(x). Denote X;C be two random variables

taking values in X and C respectively. It is well known that the classifier that minimizes

the error probability P (f(X) 6= C) is the result of the Bayes classifier with an error LB

written in discrete form as

LB = inf
f :X!C

Pff(X) 6= Cg = 1�
kX

j=1

max
1�i�n

f!ipijg;

where !i = P (C = ci) are the class probabilities, and pij = P (X = xjjC = ci) are

the class-conditional probabilities. Denote by ! = f!ig1�i�n, and pi = (pij)1�j�k, 8i =
1; : : : ; n.

Proposition 3.5 The Jensen-Rényi divergence is upper bounded by

JR!� (p1;p2; : : : ;pn) � R�(!)� 2LB; (3.10)

where R�(!) = R�(C), and � 2 (0; 1).

Proof: According to proposition 1, we have

R�(C)� JR!� (p1;p2; : : : ;pn) = R�(CjX):

It has been proven in [63] that H(CjX) � 2LB , then (3.5) implies R�(CjX) � 2LB . This

completes the proof.

A method that provides an estimate for the Bayes error without requiring knowledge

of the underlying class distributions is based on the NN classifier which assigns a test

pattern to the class of its closest pattern according to some metric [64].

For n sufficiently large, the following result relating the Bayes error LB and the asymp-

totic error LNN of the NN classifier holds [64]

n� 1

n

�
1�

r
1� n

n� 1
LNN

�
� LB � LNN : (3.11)

Using (3.10), the following inequality is deduced

JR!� � R�(!)� 2(n� 1)

n

�
1�

r
1� n

n� 1
LNN

�
:
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3.5 Image Registration with the Jensen-Rényi Divergence
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Figure 3.4: Conditional probability distributions

Let f1; f2 be two digital images defined on a bounded domain 
 � N
2 , the goal of image

registration is to determine the spatial transformation parameters (l�; ��; �) such that

(l�; ��; �) = arg max
(l;�;)

DJR!�
(f1; T(l;�;)f2) (3.12)

= arg max
(l;�;)

JR!� (p1(f1; T(l;�;)f2);p2(f1; T(l;�;)f2); : : : ;pn(f1; T(l;�;)f2))

where JR!� (�) is the Jensen-Rényi divergence of order � and weight !.

Denote X = fx1; x2; : : : ; xng and Y = fy1; y2; : : : ; yng the sets of pixel intensity values of

f1 and T(l;�;)f2 respectively, and let X; Y be two random variables taking values in X
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and Y . pi(f1; T(l;�;)f2) = (pij)1�j�n is defined as

pij = P (Y = yjjX = xi); j = 1; 2; : : : ; n

which is the conditional probability of T(l;�;)f2 given f1 for the corresponding pixel

pairs. Here the Jensen-Rényi divergence acts as a similarity measure between images.

If the two images are exactly matched, then pi = (Æij)1�j�n; i = 1; 2; :::; n. Since p0is are

degenerate distributions, by Proposition 3.2, the Jensen-Rényi divergence is maximized

for a fixed � and !. Figure (3.4.1-3.4.2) show two brain MRT images in which the

misalignment is a Euclidean rotation. The conditional probability distributions fpig
are crisp, as in Figure (3.4.3), when the two images are aligned, and dispersed, as in

Figure (3.4.4), when they are not matched.

It is worth noting that the maximization of the Jensen-Rényi divergence holds for any �

and ! such that 0 � � � 1 and !i � 0;
P

i !i = 1. If we take � = 1 and !i = P (X = xi)

then, by Proposition 3.1, the Jensen-Rényi divergence is exactly the Shannon mutual

information. Indeed, the Jensen-Rényi divergence induced similarity measure provides

a more general framework for the image registration problem.
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Figure 3.5: Mutual information vs. Jensen-Rényi divergence of uniform weights

If the two images f1 and T(l;�;)f2 are matched, the Jensen-Rényi divergence is maxi-

mized for any valid weight. Assigning !i = P (X = xi) is not always a good choice.
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Figure (3.5) shows the registration results of the two brain images in Figure (3.4) us-

ing the mutual information and the Jensen-Rényi divergence of � = 1 and uniform

weights. The peak at the matching point generated by the Jensen-Rényi divergence is

clearly much higher than the peak by the mutual information. !i = P (X = xi) gives

the background pixel the largest weight. In the presence of noise, the matching in back-

ground is corrupted. Mutual information may fail to identify the registration point.

This phenomenon is demonstrated in Figure (3.6). The following proposition estab-

lishes the optimality of the uniform weights for image registration in the context of the

Jensen-Rényi divergence.

Proposition 3.6 Let � be a uniform weight defined as �i = 1=n; i = 1; 2; : : : ; n and ! be any

vector such that !i � 0;
Pn

i=1 !i = 1: If the misalignment between f1 and f2 can be modeled

by a spatial transformation T �, then the following inequality holds

JR�� (p1(f1; T �f2); : : : ;pn(f1; T �f2)) � JR!� (p1(f1; T �f2); : : : ;pn(f1; T �f2)); 8� 2 [0; 1]:

(3.13)

Proof:pi = �i, i = 1; 2; : : : ; n when f1 and f2 are aligned by the spatial transformation

T �, then JR!� (�) becomes

JR!� (p1(f1; T �f2); : : : ;pn(f1; T �f2)) = R�(

nX
i=1

!i�i) = R�(!):

Since � � ! [62] and R�(�) is Schur-concave, we obtain R�(�) � R�(!). This completes

the proof of the proposition.

After assigning uniform weights to the various distributions in the Jensen-Rényi di-

vergence, a free parameter �, which is directly related to the measurement sensitivity,

remains to be selected. In the image registration problem, one desires a sharp and

distinguishable peak at the matching point. The sharpness of the Jensen-Rényi diver-

gence can be characterized by the maximal value as well as the width of the peak. The

sharpest peak is clearly a Dirac function. The following proposition establishes that the

maximal value of the Jensen-Rényi divergence is independent of � if the two images

are aligned, and � = 0 yields the sharpest peak.
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Figure 3.6: Registration result in the presence of the noise with � = 1.

Proposition 3.7 Let � be a uniform weight vector. If the misalignment between f1 and f2 can

be modeled by a spatial transformation T �, then

JR�� (p1(f1; T �f2); : : : ;pn(f1; T �f2)) = logn; 8� 2 [0; 1]: (3.14)

In case of � = 0,

JR�� (p1;p2; : : : ;pn) = 0

for any probability distribution pi such that pij > 0; i; j = 1; 2; : : : ; n and

JR�� (p1;p2; : : : ;pn) = logn

if and only if pi = �i; i = 1; 2; : : : ; n.

Proof: see Appendix

If there exists local variation between f1 and f2, or, if the registration of the two images is

in the presence of noise, then an exact alignment T � may not be found. The conditional

probability distribution pi(f1; T �f2) is no longer a degenerate distribution in this case.

The following proposition establishes that taking � = 1 would provide a higher peak

than any other choice of � for the non-ideal alignment.
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Proposition 3.8 Let pi = �i + Æpi; i = 1; 2; : : : ; n, where Æpi = (Æpij)1�j�n is a real distor-

tion vector such that pij � 0;
Pn

j=1 Æpij = 0 and
Pn

i=1 Æpij = 0. Let ! be a weight vector and

denote JR!(�) as the Jensen-Rényi divergence with � = 1, then we have

JR!(p1;p2; : : : ;pn) � JR!� (p1;p2; : : : ;pn); 8� 2 (0; 1): (3.15)

Proof: Observe that for any probability distribution p, R�(p) � H(p); 8� 2 (0; 1), then,

nX
i=1

!iH(pi) �
nX
i=1

!iR�(pi); 8� 2 (0; 1) (3.16)

Since
Pn

j=1 Æpij = 0;
Pn

i=1 Æpij = 0, and the Rényi entropy of � = 1 is exactly the Shan-

non entropy, the inequality (3.15) is equivalent to the inequality (3.16). This completes

the proof of Proposition 3.8.

3.5.1 Discussion
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Figure 3.7: Effect of the order � in image registration

In real world applications, there is a trade off between optimality and practicality in

choosing �. If one can model the misalignment between f1 and f2 completely and ac-

curately, � = 0 would correspond to the best choice since it generates the sharpest peak

at the matching point. It is, however, also the least robust selection, as it tends to make



3.6. NUMERICAL EXPERIMENTS: ISAR IMAGE REGISTRATION 37

all the p0is the same as the uniform distribution, if pi is not degenerate distribution and

pij > 0, then the Jensen-Rényi divergence would be zero for the whole transformation

parameter space as in case where the adapted transformation group can not “accu-

rately”1 model the relationship between f1 and f2 accurate enough. On the other hand,

� = 1 is the most robust choice, in spite of also resulting in the least sharp peak. The

choice of � therefore depends largely on the accuracy of the invoked model and on the

specific application as well as the available computational resource. As an example,

Figure (3.7.1) demonstrates the registration results of the two brain images in Figure

(3.4) with the choice of different �. In this case, � = 0 is the best choice and would gen-

erate a Dirac function with a peak at the matching point, as illustrated in Figure (3.7.2).

3.6 Numerical Experiments: ISAR Image Registration

x

y

u

v

(x,y)

R(t)

r(t)

θ

Figure 3.8: ISAR geometry of a moving target

Generating an ISAR image by using stepped frequency waveform [6] can be under-

stood as a process of estimating the target’s two-dimensional reflectivity density func-

tion �(x; y) from data collected in the frequency space. Suppose a stepped frequency

burst consists of M pulses in which the transmitted frequency linearly increases from

!0 to !0 + (M � 1)�!, where !0 is the base frequency in rads/s and �! is the step fre-

quency. Let the mth transmitted pulse sm(t) be a pulse of duration Tp and expressed in
1within some acceptable tolerance
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complex form as

sm(t) = ej!mtW (
t�mTp

Tp
); m = 0; 1; :::M � 1: (3.17)

where !m = !0 +m�!, and

W (t) =

8<
: 1; 0 � t < 1

0; otherwise:
(3.18)

Ψ
ω

ω
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ω0

ωM-1

ωM-1

0

Figure 3.9: Polar formatted data in spatial frequency space

Let’s define !(t) = !0 + (m � 1)�!; mTp � t < (m + 1)Tp; m = 0; 1; :::M � 1. Under

uniform illumination, the reflected signal from the target differential area dx�dy at the

target coordinate (x; y) is

h(x; y; t) = A�(x; y)ej!(t)(t�2r(t)=c)dxdy; 0 � t < (M � 1)Tp (3.19)

where A is a constant attenuation factor, which we can set to 1 without a loss of gen-

erality. The distance between the radar antenna and the target reflection point lo-

cated at (x; y) is denoted by r(t). We obtain the expression of the received signal for

0 � t < (M � 1)Tp by integrating reflections from all the point scatterers in the target

~g(t) =

Z +1

�1

Z +1

�1
h(x; y; t)dxdy

=

Z +1

�1

Z +1

�1
�(x; y)ej!(t)(t�2r(t)=c)dxdy: (3.20)
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After quadrature demodulation, we obtain

g(t) =

Z +1

�1

Z +1

�1
�(x; y)e�j2!(t)r(t)=cdxdy:; 0 � t < (M � 1)Tp (3.21)

It can be observed from Figure (3.8) that, for target dimension that are relatively smaller

than the target range R, the distance r(�) from the radar antenna to target reflection

point located at (x; y) is

r(t) � R(t) + x cos �(t)� y sin �(t): (3.22)

Inserting Equation (3.22) into Equation (3.21), we deduce the baseband signal in terms

of target coordinate (x; y) and rotation angle �

g(t) = e�j2!(t)R(t)=c
Z +1

�1

Z +1

�1
�(x; y)e�j(x!x(t)�y!y(t))dxdy; 0 � t < (M � 1)Tp (3.23)

where

!x(t) =
2!(t)

c
cos �(t) (3.24)

and

!y(t) =
2!(t)

c
sin �(t) (3.25)

are spatial frequency quantities defined at frequency !(t) and target rotation angle �(t).

The phase term e�j2!(t)R(t)=c is related to the target translational motion only, and can

by compensated by traditional translational motion compensation methods.

By sampling ej2!(t)R(t)=cg(t) at tm = (m + 1
2
)Tp; m = 0; 1; :::(M � 1), we obtain the data

collected in the frequency space G(m) as

G(m) =

Z +1

�1

Z +1

�1
�(x; y)e�j(x!x(tm)�y!y(tm))dxdy; m = 0; 1; :::(M � 1) (3.26)

To form a radar image, N bursts of received signal are sampled and organized burst by

burst into a M �N two-dimensional array, which is shown in Figure (3.9). This sample

matrix is not uniformly spaced in the spatial frequency, instead, it is polar formatted

data. The Discrete Fourier Transform processing of the polar formatted data would re-

sult in blurring at the edges of the target reflectivity image. Figure (3.10) is a synthetic



CHAPTER 3. INVERSE SAR IMAGE REGISTRATION 40

Figure 3.10: ISAR image of moving target reconstructed by the Discrete Fourier Trans-

formation

ISAR image of an aircraft MIG-25 [65]. The radar is assumed to be operating at 9GHz

and transmits a stepped-frequency waveform. Each burst consists of 64 narrow-band

pulses stepped in frequency from pulse to pulse by a fixed frequency step of 8MHz.

The pulse repetition frequency is 15KHz. Basic motion compensation processing has

been applied to the data. A total of 512 bursts of received signal are taken to reconstruct

the image of this aircraft, which corresponds to 2:18s integration time. As we can see,

the resulting image is defocused due to the target rotation. In fact, the defocused im-

age in Figure (3.10) is formed by overlapping a series of MIG-25s at different viewing

angles. By replacing the Fourier transform with the time varying spectral analysis tech-

niques [35] [65], we can take a sequence of snapshots of the target during the 2:18s of

integration time. Figure (3.11.1-3.11.6) shows the trajectory of the MIG-25, with 6 image

frames taken at t = 0:1280s; 0:4693s; 0:8107s; 1:1520s ; 1:4933s; 1:8347s respectively.

Image registration can be applied to estimate the target motion from this sequence of

images. For the synthetic ISAR images shown in Figure(3.11), we search for the rotation

angles f�igNi=1 between a sequence of image frames fIigNi=0 observed in a time interval
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(1) (2)

(3) (4)

(5) (6)

Figure 3.11: Trajectory of a sequence of MIG-25 image frames

[0; T ]. By Equation (3.12), �i is given by

��i = argmax
�i

JR!� (p1(Ii�1; T�iIi); : : : ;pn(Ii�1; T�iIi)):

Figure (3.12.1-3.12.5) shows the rotation angles f�igNi=1 obtained by registering the 6 con-

secutive MIG-25 image frames. As can already be seen in the figures, uniform weights

produce the sharpest peak.

By interpolating f�igNi=1, we obtain an estimated trajectory of the MIG-25 rotational mo-

tion during the imaging time, as shown by the solid line in Figure (3.12.6). The dotted

line in Figure (3.12.6) is the true trajectory. The standard deviation is 0:5580Æ. An esti-

mated trajectory of a target is particularly important since it may be subsequently used

in polar re-formating [6] and re-sampling the received signal into rectangular format.
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Figure 3.12: Image registration of a MIG-25 Trajectory

This results in a focused image of the MIG-25 based on all the received signals in the

time interval [0; 2:18s], as demonstrated in Figure (3.13).

3.7 Conclusions

A new generalized divergence measure, Jensen-Rényi divergence, is proposed in this

paper. We prove the convexity of this divergence measure, derive its maximum value,

and analyze its performance upper bounds in terms of the Bayes error of nearest neigh-

bor classifier. Based on the Jensen-Rényi divergence, we propose a new approach to the

problem of image registration. Compared to the mutual information based registration

techniques, the Jensen-Rényi divergence adjusts its weight and exponential order to
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control the measurement sensitivity of the joint histogram. This flexibility ultimately

results in a better registration accuracy.

Figure 3.13: Reconstructed MIG-25 by polar reformatting

3.8 Appendix

Proof of Proposition 3.1

Denote X = fx1; x2; : : : ; xng and Y = fy1; y2; : : : ; yng. Let X; Y be two random variables

taking values inX and Y . Recall that the mutual information betweenX and Y is given

by [66]

I(X;Y ) = H(Y )�H(Y jX); (3.27)

where H(Y ) is the Shannon entropy of Y and H(Y jX) is the conditional Shannon en-

tropy of Y given X .

Instead of using Shannon entropy in (3.27), the mutual information can be generalized

using Rényi entropy. Therefore, the �-mutual information can be defined as

I�(X;Y ) = R�(Y )�R�(Y jX); � 2 (0; 1);

where R� is the Rényi entropy of order � 2 (0; 1).
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Denote by P (xi) = !i, P (Y = yjjX = xi) = pij and P (Y = yj) = qj , then it is easy to

check that

R�(Y )� R�(Y jX) = JR!� (p1;p2; : : : ;pn); (3.28)

where pi = (pij)1�j�k, for all i = 1; : : : ; n.

For fixed !i, the mutual information is a convex function of pij [66], then it can be

verified that the �-mutual information is also a convex function of pij, leading to the

Jensen-Rényi divergence a convex function of p1;p2; : : : ;pn.

Proof of Proposition 3.4

Denote by pa = (pak)
L�1
k=0 , pb = (pbk)

L�1
k=0 and dk = pbk � pak, where L� 1 is the maximum

gray level of the image. The Jensen-Rényi divergence can then be written as

JR�(�) =
1

1� �
log

L�1X
k=0

�
pak +

�

2
dk

��

� 1

2(1� �)
log

L�1X
k=0

(pak + �dk)
�

� 1

2(1� �)
log

L�1X
k=0

p�ak

Simple calculations show that the first derivative JR0�(�) vanishes for � = 0, and the

second derivative JR00�(�) is positive, that is JR0�(�) is an increasing function of �. It

follows that JR0�(�) � 0 for all � 2 [0; 1]. Therefore, JR�(�) is an increasing function of

�. This concludes the proof.

Proof of Proposition 3.7

By Proposition 3.6,

JR�� (p1(f1; T �f2); : : : ;pn(f1; T �f2))

= R�(

nX
i=1

�i�i)

=
1

1� �
log

nX
i=1

(
1

n
)�

= logn
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For � = 0,

R�(pi) =
1

1� �
log

nX
i=1

(pij)
� = logn; 8pij > 0;

nX
j=1

pij = 1

we obtain

JR�� (p1;p2; : : : ;pn) = R�(

nX
i=1

1

n
pi)�

nX
i=1

1

n
R�(pi) = 0:

If � = 0 and pi = �i; i = 1; 2; : : : ; n, denote 00 = 0, then by Proposition 3.6,

JR�� (p1;p2; : : : ;pn) = logn:

This concludes the proof for the proposition.
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CHAPTER

4 Introduction to Multi-

scale Analysis

I
N this section, we briefly review the concept of multiscale analysis [67]. We study

the properties of the operator which approximates a signal at a given resolution.

We show that the difference of a signal at different resolutions can be extracted by de-

composing the signal on a wavelet orthonormal basis. In L2(R), a wavelet orthonormal

basis is a family of functions f
p
2�j (2�jt � n)g(j;n)2Z2, which is built by dilating and

translating a unique function  (�). The development of orthonormal wavelet bases has

opened a new bridge between approximation theory and signal processing. For the

application of signal estimation in additive noise environment, linear operators have

long predominated because of their simplicity, despite their limited performance. It is

possible to keep the simplicity while improving the performance with non-linearities in

a sparse representation. One such example is a wavelet thresholding estimator, which

is used to suppress additive noises and restore signals degraded by low-pass filters.

4.1 Multiscale Approximation of L2(R )

Adapting the signal resolution allows one to process only the relevant details for a par-

ticular task. Burt and Adelson [68] introduced a multiresolution pyramid that can be

used to process a low resolution first and then selectively increase the resolution when

47
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necessary. The approximation of a function f at a resolution 2�j is specified by samples

on a discrete grid which provides local averages of f over neighborhoods of size pro-

portional to 2j.

Definition 4.1 Let fVjg; j 2 Z be a set of closed subspaces of L2(R), we say that the sequence

(Vj); j 2 Z is a multiresolution approximation of L2(R), if the following conditions hold:

� 8(j; n) 2 Z
2; f(t) 2 Vj () f(t� 2jn) 2 V2j (4.1)

� 8j 2 Z;Vj+1 � Vj (4.2)

�8j 2 Z; f(t) 2 Vj () f(
t

2
) 2 Vj+1 (4.3)

� lim
j!+1

Vj =

+1\
j=�1

Vj = f0g (4.4)

� lim
j!�1

Vj = (

+1[
j=�1

Vj) = L
2(R) (4.5)

� There exists �(�) such that f�(t� n)gn2Z is a Riesz basis of V0

Example: Shannon approximations Frequency band-limited functions yield a mul-

tiresolution approximations. The space Vj is defined as the set of functions whose

Fourier transform has a support included in [�2�j�; 2�j�]. It can be shown that an

orthonormal basis f�(t� n)gn2Z of V0 is defined by

�(t) =
sin(�t)

�t
: (4.6)

All the other properties of the multiresolution approximation are easily verified.

The approximation of f at the resolution of 2�j is defined as the orthogonal projection

PVj
f on Vj. To compute this projection, we must find an orthonormal basis of Vj. The

following theorem orthogonalizes the Riesz basis f�(t � n)gn2Z and constructs an or-

thonormal basis of each subspace Vj by dilating and translating a single function �(�)
called a scaling function. To avoid the resolution 2�j and the scale 2j, in the rest of the

chapter the notation of resolution is dropped and PVj
f is called an approximation at
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the scale 2j.

Theorem 4.1 Let fVjgj2Z be a multiresolution approximation and � be the scaling function

whose Fourier transform is

�̂(!) =
�̂(!)

(
P+1

k=�1 j�̂(! + 2k�)j2)1=2 (4.7)

Let us denote

�j;n(t) =
1p
2j
�(
t� 2jn

2j
): (4.8)

The family f�j;ngn2Z is an orthonormal basis of Vj for all j 2 Z.

The orthogonal projection of f over Vj is obtained with an expression in the scaling

orthogonal basis

PVj
f =

+1X
k=�1

< f; �j;n > �j;n: (4.9)

The inner products

aj[n] =< f; �j;n > (4.10)

provide a discrete approximation of f at the scale 2j.

For the case of Shannon approximations, we have constructed Riesz basis f�(t�n)gn2Z,

which are orthonormal basis, hence �(t) = �(t).

A multiresolution approximation is entirely characterized by the scaling function � that

generates an orthonormal basis of each subspace Vj. We study the properties of �

which guarantee that the spaces Vj satisfy all the conditions of a multiresolution ap-

proximation. It is proven [67] that any scaling function can be specified by a discrete

filter called a conjugate mirror filter [69]. The multiresolution causality property im-

poses that Vj � Vj�1. In particular, 1=
p
2�(t=2) 2 V1 � V0. Since f�(t � n)gn2Z is a

basis of V0, we can decompose

1p
2
�(
t

2
) =

+1X
n=�1

h[n]�(t� n); (4.11)
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with

h[n] =<
1p
2
�(
t

2
); �(t� n) > : (4.12)

Equation (4.11) relates a dilation of the scaling function � by 2 to its integer translations.

The sequence h[n] can be interpreted as a discrete filter.

The Fourier transformation of both sides of Equation (4.11) yields

�̂(2!) =
1p
2
ĥ(!)�̂(!) (4.13)

for ĥ(!) =
P+1

n=�1 h[n]e�j!n. It then makes sense to express �̂(!) directly as a product

of dilation of ĥ(!). For any p � 0, Equation (4.13) implies

�̂(2�p+1!) =
1p
2
ĥ(2�p!)�̂(2�p!): (4.14)

If �̂(!) is continuous at ! = 0 then limp�>+1 �̂(2�p!) = �̂(0). By substitution, we obtain

�̂(!) =

+1Y
p=1

ĥ(2�p!)p
2

�̂(0): (4.15)

The following theorem by Mallat and Meyer [67] gives necessary and sufficient condi-

tions on ĥ(!) to guarantee that this infinite product is the Fourier transform of a scaling

function.

Theorem 4.2 Let � 2 L
2(R) be an integrable scaling function. The Fourier transform of

h[n] =< 1p
2
�( t

2
); �(t� n) > satisfies

8! 2 R; jĥ(!)j2 + jĥ(! + �)j2 = 2; (4.16)

and

ĥ(0) =
p
(2): (4.17)

Conversely, if ĥ(!) is 2� periodic and continuously differentiable in a neighborhood of ! = 0, if

it satisfies Equation (4.16) and (4.17), then

�̂(!) =

1Y
p=1

ĥ(2�p!)p
2

: (4.18)

is the Fourier transform of a scaling function � 2 L2(R).
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For the case of Shannon multiresolution approximation, �̂(!) = 1[��;�](!). We thus

derive from Equation (4.18) that

8! 2 [��; �]; ĥ(!) =
p
21[��=2;�=2](!):

4.2 Orthonormal Wavelet Basis

In the multiscale analysis, we are especially interested in the difference between consec-

utive resolution scales. This difference is often called a detail signal. The approximation

at resolution 2j�1 and 2j of a signal are respectively equal to their orthogonal projections

on Vj�1 and Vj . It can also be shown that the signal details at resolution 2j are given

by an orthogonal projection of the original signal onto the orthogonal complement of

Vj in Vj�1. Let Oj represent the orthogonal complement of Vj, we then have,

Oj?Vj;

Oj �Vj = Vj�1;

where � denotes a direct sum. In order to obtain the detail signal of a function on Oj,

we need to find an orthonormal basis of Oj .

Theorem 4.3 [70] Let � be a scaling function and h the corresponding conjugate mirror filter.

Let  (t) be function whose Fourier transformation is defined by

 ̂(!) =
1p
2
ĝ(
!

2
)�̂(

!

2
) (4.19)

with

ĝ(!) = e�j!ĥ�(! + �) (4.20)

Let us denote

 j;n(t) =
1p
2j
 (
t� 2jn

2j
) (4.21)

then, for any scale 2j, f j;ngn2Z is an orthonormal basis of Oj. For all scales, f j;ng(j;n)2Z2 is

an orthonormal basis of L2(R).
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The orthogonal projection of a signal f 2 L2(R) in a detailed space Oj is then obtained

with a partial expansion in its wavelet basis

POj
f =

+1X
n=�1

< f;  j;n >  j;n: (4.22)

A signal expansion in a wavelet orthonormal basis can thus be viewed as an aggrega-

tion of details at all the scales 2j that goes from �1 to +1,

f =

+1X
j=�1

POj
f =

+1X
j=�1

+1X
n=�1

< f;  j;n >  j;n: (4.23)

Many applications using wavelet decomposition desire efficient approximations of par-

ticular classes of functions by a few non-zero coefficients. This usually requires optimiz-

ing the design of  (�) to produce maximum number of wavelet coefficients < f;  j;n >

that are close to zero. The actual number of coefficients with non-negligible values

depends on the regularity of f , the number of vanishing moments of the analyzing

wavelet and the size of its support.

A wavelet has p vanishing moments [70] ifZ +1

�1
tk (t)dt = 0; 0 � k � p (4.24)

The vanishing moment is crucial to measure the local regularity of a signal. If the

wavelet has p vanishing moments, then it can be shown that the wavelet transforma-

tion is actually a multiscale differential operator of order p. This nice property relates

the differentiability of f with its wavelet transform decay at fine scales.

The kth order derivative  ̂(k)(!) is the Fourier transform of (�it)k (t). Hence

 ̂(k)(0) =

Z +1

�1
(�it)k (t)dt: (4.25)

If a wavelet  (�) has p vanishing moments, then by Equation (4.24),  ̂(k)(!) and its first

p� 1 derivatives are zero at ! = 0. Theory (4.3) shows that

p
2 ̂(2!) = e�i!ĥ�(! + �)�̂(!): (4.26)
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Figure 4.1: Orthogonal wavelet decomposition of f(t) with Daubechies wavelet at res-

olutions of 2j; j = �6;�7; :::;�10, PV
�6
f is the remaining coarse signal approximation

aJ [n] =< f; �J;n > for J = �6.
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Since �̂(0) 6= 0, it follows that if a wavelet  (�) has p vanishing moments, then its cor-

responding conjugate mirror filter ĥ(!) and its first p� 1 derivatives are zero at ! = �,

i.e., we can decompose ĥ(!) as

ĥ(!) =
p
2

�
1 + e�i!

2

�p

R(!) (4.27)

where R(!) is a function of e�i!.

As mentioned before, the number of wavelet coefficients of f with non-negligible val-

ues depends on not only the number of vanishing moment, but also the size of its

support. Suppose f(t) has a singularity point at t = t0, and if t0 is inside the support of

 j;n(t) =
p
2�j (2�jt� n), 8(j; n) 2 Z

2, then the corresponding wavelet coefficient

< f;  j;k >=

Z +1

�1
f(t)

1p
2j
 (
t� 2jn

2j
)dt

might have a large value. If  j;n has a compact support of size N , then at scale 2j,

there must be N wavelets  j;n whose support includes the singularity point at t0. To

minimize the number of coefficients with non-negligible values, we have to choose a

wavelet  (�) with a small support size.

The support size of  (�) are related to the support size of h(�) and �(�). Daubechies

[29] showed that the scaling function �(�) has a compact support if and only if h(�)
has a compact support. Assume the support of h(�) and �(�) are [N1; N2] and [K1; K2]

respectively, recall that

1p
2
�(
t

2
) =

+1X
n=�1

h[n]�(t� n);

the support size of �(t=2) should be [N1+K1; N2+K2]. On the other hand, �(t=2) is just

a dilation of �(t), its support should be [2K1; 2K2]. The equality proves that if h has a

compact support of [N1; N2], then the support of �(t) is also [N1; N2].

Since  (t=2) 2 O1 � V0, it thus can be decomposed in f�(t � n)gn2Z, which is an

orthonormal basis of V0,

1p
2
 (
t

2
) =

+1X
n=�1

g[n]�(t� n):
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n h[n] n h[n] n h[n]

p = 2 0 .482962913145 p = 2 0 .332670552950 p = 4 0 .230377813309

1 .836516303738 1 .806891509311 1 .714846570553

2 .224143868042 2 .459877502118 2 .630880767930

3 -.129409522551 3 -.135011020010 3 -.027983769417

4 -.085441273882 4 -.187034811719

5 .035226291882 5 .030841381836

6 .032883011667

7 -.010597401785

Table 4.1: Daubechies filter coefficients for wavelets with p = 2; 3; 4 vanishing moments.

By equation (4.20), we have

g[n] = (�1)1�nh[1� n]:

Then we obtain that

1p
2
 (
t

2
) =

+1X
n=�1

(�1)1�nh[1� n]�(t� n):

The sum in the right hand side has a support equal to [N1�N2+1; N2�N1+1]. Hence

the support of  (t) is [(N1 �N2 + 1)=2; (N2 �N1 + 1)=2].

The direct consequence of the above derivation is that tradeoff should be made be-

tween the support size of a wavelet and its number of vanishing moment. One can

not have a wavelet of compact support with an arbitrary high vanishing moments. To

ensure a wavelet  with p vanishing moments has a minimal support, we need con-

struct ĥ(!) as in Equation (4.27) to have a minimum degree. The difficulty is to design

a polynomial R(!) of minimum degree such that

jĥ(!)j2 + jĥ(! + �)j2 = 2: (4.28)

Since h[n] is real, jĥ(!)j2 is a even function and thus can be written as a polynomial in

cos!. Hence jR(!)j2 defined in Equation (4.27) is a polynomial in cos! and we can also
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Figure 4.2: Daubechies scaling function and wavelets

write it as a polynomial P (sin2 !=2)

jĥ(!)j2 = 2(cos2
!

2
)pP (sin2

!

2
):

The quadrature condition (4.28) is equivalent to

(1� y)pP (y) + ypP (1� y) = 1; (4.29)

for any y = sin2(!=2) 2 [0; 1]. To minimize the nonzero terms of the finite Fourier series

ĥ(!), we must find the solution P (y) � 0 of minimum degree, which is obtained with

the Bezout [71] classical theorem on polynomials. The Bezout theorem proves that there

exist two unique polynomials P1(y) and P2(y) such that

(1� y)pP1(y) + ypP2(y) = 1:

It can be verified that P (y) = P1(y) = P2(1� y) with

P (y) =

p�1X
k=0

0
@ p� 1 + k

k

1
A yk:
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Figure 4.3: Symmlet scaling functions and wavelets

Clearly P (y) � 0 for y = sin2(!=2) 2 [0; 1]. Hence P (y) is the polynomial of the mini-

mum degree satisfying the Equation (4.29).

Now we need to construct a minimum degree polynomial

R(ei!) =

mX
k=0

rke
�ik! = r0

mY
k=0

(1� ake
�i!)

such that jR(ei!)j2 = P (sin2 !=2). Let z = e�i!, we obtain

R(z)R(z�1) = r20

mY
k=0

(1� akz)(1� akz
�1) = P (

2� z � z�1

4
) = Q(z) (4.30)

Since Q(z) = R(z)R(z�1) has real coefficients, if ck is a root of Q(z), then c�k, 1=ck

and 1=c�k are roots of Q(z) as well. To design R(z) satisfies Equation (4.30), we choose

each root ak of R(z) among a pair (ck; 1=ck) and include a�k to obtain real coefficients.

This procedure yields a polynomial of minimum degree m = p � 1. the resulting fil-

ter h of minimum size has N = p + m + 1 = 2p nonzero coefficients. Among all the
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possible factorizations, the minimum phase solution R(ei!) is obtained by choosing ak

among (ck; 1=ck) to be inside the unit circle jakj � 1: The resulting causal filter h is a

Daubechies filter of order p. Table (4.1) gives the coefficients of these Daubechies filters

for p = 2; 3; 4:

If  is a wavelet with p vanishing moments that generates an orthonormal basis of

L
2(R), then it has a support size larger or equal to 2p�1. A Daubechies wavelet [29] cal-

culated with Daubechies filter banks has a minimum size of support equal to [�p+1; p].

The support of the corresponding scaling functions � is [0; 2p� 1].

As a example, Figure (4.2) shows Daubechies scaling functions � and wavelet  at scale

j = 3 with p = 2; 3; 4 vanishing moments respectively.

Daubechies wavelets are very asymmetric because they are constructed by selecting the

minimum phase square root of Q(z) in Equation (4.30). One can show that filters cor-

responding to a minimum phase square root have their energy optimally concentrated

near the starting point of their support. They are thus highly non-symmetric, which

yields very asymmetric wavelets.

To obtain symmetric or antisymmetric wavelet, the filter h must be symmetric or anti-

symmetric with respect to the center of its support, which means that ĥ(!) has a linear

phase. Haar filter is the only real compactly supported conjugate mirror filter that has

a linear phase. The Symmlet filters of Daubechies are obtained by optimizing the choice

of the square root of Q(z) to obtain an almost linear phase. The resulting wavelet still

have a minimum support [�p+1; p] with p vanishing moments but they are more sym-

metric, as illustrated in Figure(4.3).

4.3 Fast Orthogonal Wavelet Transform

A fast wavelet transform decomposes successively each approximation PVj
into a coarser

resolution PVj+1
plus the wavelet coefficients carried by POj+1

. In the reverse direction,

the reconstruction from wavelet coefficients recovers each PVj
from PVj+1

and POj+1
.
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Since f�j;ngn2Z and f j;ngn2Z are orthonormal basis of Vj and Oj , the projection of

f 2 L2(R) on VJ is characterized by

PVJ
f =

LX
j=J+1

+1X
n=�1

dj[n] j;n +

+1X
n=�1

aL[n]�L;n; 8L > J (4.31)

where

aj[n] =< f; �j;n >; (j; n) 2 Z
2 (4.32)

and

dj[n] =< f;  j;n >; (j; n) 2 Z
2: (4.33)

The following theorem [67] shows that these coefficients are calculated with a cascade

of discrete convolution and subsampling. We denote �x[n] = x[�n] and a zero interpo-

lation of x[n] as

�x[n] =

8<
: x[k]; n = 2k

0; n = 2k + 1
:

Theorem 4.4 Let � be a scaling function and fh; gg are its corresponding conjugate mirror

filters. At the decomposition,

aj+1[k] =

+1X
n=�1

h[n� 2k]aj[n] = aj ? �h[2k] (4.35)

dj+1[k] =

+1X
n=�1

g[n� 2k]aj[n] = aj ? �g[2k] (4.36)

At the reconstruction,

aj[k] =

+1X
n=�1

h[k � 2n]aj+1[n] +

+1X
n=�1

g[k � 2n]dj+1[n] = �aj+1 ? h[k] + �dj+1 ? g[k]: (4.37)

Theory (4.4) proves that aj+1 and dj+1 are computed by taking every other sample of

the convolution of aj with �h and �g respectively, as illustrated by Figure (4.4a). The fil-

ter �h removes the higher frequencies of the inner product sequence aj whereas �g is a

high-pass filter which collects the remaining highest frequencies. The reconstruction is

an interpolation that inserts zeros to expand aj+1 and dj+1 and filter these signals, as

shown in Figure (4.4b).
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Figure 4.4: (a) A fast wavelet transform is computed with a cascade of filters with �h and

�g followed by a factor 2 subsampling. (b) A fast inverse wavelet transform reconstructs

progressively each aj by inserting zeros between samples of aj+1 and dj+1, filtering and

adding the outputs.

The decomposition of a discrete signal in conjugate mirror filters fh; gg can be inter-

preted as an expansion in a basis of I2(Z), the resulting family fh[n� 2l]; g[n� 2l]gl2Z is

an orthogonal basis of I2(Z). An orthogonal wavelet representation of aJ =< f; �J;n >

is composed of wavelet coefficients of f at scales 2J < 2j � 2L plus the remaining

approximation at the largest scale 2L,

[ fdjgJ<j�L; aL ]

It is computed by iterating Equation (4.35) and (4.36) for J < j � L. Figure (4.1) gives

a numerical example computed with the Daubechies filter of order p = 4. The original

signal aJ is recovered from this wavelet representation by iterating the reconstruction

Equation (4.37) for J < j � L.

The conjugate mirror filters are often used in filter banks that cascade several levels of

filtering and subsampling. It is thus necessary to understand the behavior of such a

cascade [72]. In a wavelet filter bank tree, the output of the low-pass filter �h is sub-
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decomposed whereas the output of the high-pass filter �g is not. This is illustrated in

Figure (4.4). Suppose that the sampling distance of the original signal is N�1. We

denote aJ [n] this discrete signal, with 2J = N�1. At the depth j > J of this filter bank

tree, the low-pass signal aj and high-pass signal dj can be written as

aj[n] = aJ ? ��j[2
j�Jn] =< aJ [k]; �j[k � 2j�Jn] >

and

dj[n] = aJ ? � j[2
j�Jn] =< aJ [k];  j[k � 2j�Jn] > :

The Fourier transform of these equivalent filters are

�̂(!) =

j�J�1Y
p=0

ĥ(2p!) (4.38)

and

 ̂(!) = ĝ(2j�J�1!)
j�J�2Y
p=0

ĥ(2p!): (4.39)

A filter bank tree of depth L� J > 0 decomposes aJ over the family of vectors

� f�L[k � 2L�Jn]gn2Z; f j[k � 2j�Jn]gJ<j�L;n2Z
�
: (4.40)

For conjugate mirror filters, one can verify that this family is an orthonormal basis of

I
2(Z). These discrete vectors are close to a uniform sampling of the continuous time

scaling functions �j(t) = 2�j=2�(2�jt) and wavelets  j(t) = 2�j=2 (2�jt). When the

number L � J of successive convolutions increases, one can verify that �j[n] and  j[n]

converges respectively to N�1=2�j(N�1n) and N�1=2 j(N�1n). We therefore refer the

Equation (4.40) to as a Discrete Wavelet Basis of I2(Z).

4.4 Filter Banks and Biorthogonal Wavelets

The fast discrete wavelet transform decomposes signal into low-pass and high-pass

components subsampled by 2, the inverse transform performs the reconstruction. Study

of such classical multirate filter banks became a major signal processing topic in 1976,
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Figure 4.5: A two channel perfect reconstruction filter banks

when Croisier, Esteban and Galand [73] discovered that it is possible to perform such

decompositions and reconstructions with quadrature mirror filters. However, besides the

simple Haar filter, a quadrature mirror filter can not have a finite impulse response.

In 1984, Smith and Barnwell [74] and Mintzer [75] found necessary and sufficient con-

ditions for obtaining perfect reconstruction orthogonal filters with a finite impulse re-

sponse, that they called conjugate mirror filters. The theory was completed by the biorthog-

onal mirror filter equations of Vetterli [76, 77]. We follow this digital signal processing

approach which gives a simple understanding of perfect reconstruction filter banks.

4.4.1 Perfect Reconstruction Filter Banks

A two-channel multirate filter bank convolves a signal a0 with a low-pass filter �h[n] =

h[n] and a high-pass filter �g[n] = g[n] and subsamples the output by 2,

a1[n] = a0 ? �h[2n] and d1[n] = a0 ? �g[2n]: (4.41)

A reconstructed signal ~a0 is obtained by filtering the zero interpolated signals with a

dual low-pass filter ~h and a dual high-pass filter ~g, as shown in Figure (4.5). With the

zero insertion notation (4.34), it yields

~a0[n] = �a1 ? ~h[n] + �d1 ? ~g[n]: (4.42)

The following theorem by Vetterli [77] gives biorthogonal conditions, which guarantee

that a0 = ~a0:
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Theorem 4.5 The filter bank performs an exact reconstruction for any input signal if and only

if

ĥ�(! + �)~̂h(!) + ĝ�(! + �)~̂g(!) = 0; (4.43)

and

ĥ�(!)~̂h(!) + ĝ�(!)~̂g(!) = 2: (4.44)

Theory (4.5) proves that the reconstruction filters ~h and ~g are entirely specified by the

decomposition filters h and g. In the matrix form, the biorthogonal condition can be

written as, 2
4 ĥ(!) ĝ(!)

ĥ(! + �) ĝ(! + �)

3
5�

2
4 ~̂h�(!)

~̂g�(!)

3
5 =

2
4 2

0

3
5 :

For the finite impulse response filters, there exist a 2 R and l 2 Z such that

ĝ(!) = ae�i(2l+1)! ~̂h�(! + �) and ~̂g(!) = a�1e�i(2l+1)!ĥ�(! + �):

The factor a is a gain which is inverse for the decomposition and reconstruction filters

and l is a reverse shift. We generally set a = 1 and l = 0. The internal relationship

between biorthogonal filter banks become

ĝ(!) = e�i! ~̂h�(! + �) and ~̂g(!) = e�i!ĥ�(! + �): (4.45)

In the time domain, Equation (4.45) can be written as

g[n] = (�1)1�n~h[1� n] and ~g[n] = (�1)1�nh[1� n]: (4.46)

The two pairs of filters fh; gg and f~h; ~gg plays a symmetric role and can be inverted.

The biorthogonal condition simplifies to

ĥ�(!)~̂h(!) + ĥ�(! + �)~̂h(! + �) = 2: (4.47)

If we impose that the decomposition filter h is equal to the reconstruction filter ~h, then

Equation (4.47) is exactly the condition of conjugate mirror filters given in Equation

(4.28).
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4.4.2 Biorthogonal Wavelets

An infinite cascade of perfect reconstruction filters fh; gg and f~h; ~gg yields two scaling

functions and wavelets whose Fourier transforms satisfy

�̂(!) =

+1Y
p=1

ĥ(2�p!)p
2

and ~̂�(!) =

+1Y
p=1

~̂h(2�p!)p
2

(4.48)

and

 ̂(!) =
1p
2
ĝ(
!

2
)�̂(

!

2
) and ~̂ (!) =

1p
2
~̂g(
!

2
) ~̂�(

!

2
): (4.49)

One [71, 78] can proves, with some additional conditions, �̂ and ~̂� are the Fourier trans-

forms of finite energy functions. The two wavelet families f j;ng(j;n)2Z2 and f ~ j;ng(j;n)2Z2
are biorthogonal Riesz bases ofL2(R). Biorthogonality means that for any (j1; j2; n1; n2) 2
Z
4,

<  j1;n1;
~ j2;n2 >= Æ(j1 � j2; n1 � n2) (4.50)

Any f 2 L2(R) has two possible decompositions in these bases,

f =

+1X
j=�1

+1X
n=�1

< f;  j;n > ~ j;n =

+1X
j=�1

+1X
n=�1

< f; ~ j;n >  j;n: (4.51)

The Riesz stability implies that there exist A > 0 and B > A such that

Akfk2 �
+1X

j=�1

+1X
n=�1

j < f;  j;n > j2 � Bkfk2

and
1

B
kfk2 �

+1X
j=�1

+1X
n=�1

j < f; ~ j;n > j2 � 1

A
kfk2:

Biorthogonal wavelet bases are related to multiresolution approximations. The family

f�(t�n)gn2Z is a Riesz basis of the spaceV0 it generates, whereas f~�(t�n)gn2Z is a Riesz

basis of another space ~V0. Let Vj and ~Vj be the spaces spanned by f�j;n(t)gn2Z and

f~�j;n(t)gn2Z respectively. One can verify that fVjgn2Z and f~Vjgn2Z are two multireso-

lution approximations of L2(R). For any j 2 Z, the dilated f j;n(t)gn2Z and f ~ j;n(t)gn2Z
are bases of two detail spaces fOjgn2Z and f~Ojgn2Z such that

Vj �Oj = Vj�1
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and

~Vj � ~Oj = ~Vj�1:

The biorthogonality of the decomposition and reconstruction wavelets implies that Oj

is not orthogonal to Vj , but is to ~Vj, whereas ~Oj is not orthogonal to ~Vj , but is to Vj.

The support size, the number of vanishing moments, the regularity and the symmetry

of biorthogonal wavelets is controlled with an appropriate design of h and ~h.

Similar to the case of orthogonal wavelets, one can show that if h[n] and~h[n] are nonzero

respectively for N1 � n � N2 and ~N1 � n � ~N2, then � and ~� have a support equal to

[N1; N2] and [ ~N1; ~N2] respectively. By Equation (4.46), notice that

g[n] = (�1)1�n~h[1� n]; and ~g[n] = (�1)1�nh[1� n]

the support of  and ~ are respectively [(N1 � ~N2 + 1)=2; (N2 � ~N1 + 1)=2] and [( ~N1 �
N2 + 1)=2; ( ~N2 � N1 + 1)=2]. Both wavelets thus have the same size of support, which

is equal to (N2 �N1 + ~N2 � ~N1)=2.

Since �̂(0) 6= 0 and ~̂�(0) 6= 0, Equation (4.25) and (4.49) show that the number of van-

ishing moments of  and ~ depends on the number of zeros at ! = 0 of ĝ(!) and ~̂g(!)

respectively. Notice ĝ(!) = ae�i(2l+1)! ~̂h�(! + �) and ~̂g(!) = a�1e�i(2l+1)!ĥ�(! + �) for

some a 2 R and l 2 Z, we conclude that  has ~p vanishing moments if and only if ~̂h(!)

has a zero of order ~p at ! = �, whereas, ~ has p vanishing moments if and only if ĥ(!)

has a zero of order p at ! = �. On the other hand, the smoothness of � and  can be

related to the order of zeros of ĥ(!) at ! = � [70]. This is intuitively make sense by

Equation (4.48) and (4.49), the more number of zeros of ĥ(!) at ! = �, the smoother �

and  will be. The following remark summarizes the relationship between the number

of vanishing moments and the regularity of biorthogonal wavelets.

Remark: Let fh; gg and f~h; ~gg be perfect reconstruction filter banks, and f�;  g and f~�; ~ g
are biorthogonal scaling functions and wavelets generated from fh; gg and f~h; ~gg. Let the or-

der of zeros of ĥ(!) and ~̂h(!) at ! = � be p and ~p respectively, then the regularity of � and

 increases with p, which is the vanishing moments of ~ , similarly, the regularity of ~� and ~ 

increases with ~p, which is the vanishing moments of  .
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n p; ~p h[n] ~h[n]

0
p
2=2 45

p
2=64

�1; 1 p = 2
p
2=4 19

p
2=64

�2; 2 ~p = 2 �p2=8

�3; 3 �3p2=64

�4; 4 3
p
2=128

0; 1 3
p
2=8 11025

p
2=16384

�1; 2 p = 2
p
2=8 �307p2=16384

�2; 3 ~p = 2 �3489p2=16384

�3; 4 363
p
2=16384

�4; 5 865
p
2=16384

�5; 6 �195p2=16384

�6; 7 �105p2=16384

�7; 8 35
p
2=16384

Table 4.2: Perfect reconstruction filters h and ~h for compactly supported spline

biorthogonal wavelets with p and ~p vanishing moments.

Since  and ~ may not have the the same regularity and number of vanishing moments,

the two reconstruction formulas

f =

+1X
j=�1

+1X
n=�1

< f;  j;n > ~ j;n

and

f =

+1X
j=�1

+1X
n=�1

< f; ~ j;n >  j;n

are not equivalent. To produce small wavelet coefficients in the regular regions, we

must compute the inner products using the wavelet with the maximum number of van-

ishing moments. The reconstructions is then performed with the other wavelet, which

is generally the smoother one.

It is possible to construct smooth biorthogonal wavelets of compact support which are
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~�(t); (p = 2; ~p = 4) ~ (t); (p = 2; ~p = 4) ~�(t); (p = 3; ~p = 7) ~ (t); (p = 3; ~p = 7)
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Figure 4.6: Spline biorthogonal scaling functions and wavelets for (p = 2; ~p = 4) and

(p = 3; ~p = 7) at scale j = 3.

either symmetric or antisymmetric. This is impossible for orthogonal wavelets, except

the particular case of the Haar basis. Symmetric or antisymmetric wavelets are syn-

thesized with perfect reconstruction filters having a linear phase. This is a desirable

property for many applications.

The biorthogonal wavelets with a minimum size of support are constructed with a

technique introduced in [78], which is similar to the construction of Daubechies wavelets.

As an example, Table (4.2) gives the coefficients of perfect reconstruction filters of com-

pactly supported spline wavelets for (p = 2; ~p = 4) and (p = 3; ~p = 7). The resulting

symmetric and antisymmetric biorthogonal wavelets and scaling functions are shown

in Figure (4.6).
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4.4.3 Lifting Wavelets

A lifting is an elementary modification of perfect reconstruction filters, which is used

to improve the wavelet properties. Compactly supported biorthogonal wavelet bases

can be constructed from finite impulse response biorthogonal filters fh; g;~h; ~gg which

satisfy

ĥ�(!)~̂h(!) + ĥ�(! + �)~̂h(! + �) = 2

and

ĝ(!) = e�i! ~̂h�(! + �) and ~̂g(!) = e�i!ĥ�(! + �):

The filter h and ~h are said to be dual. The following theorem [79] characterizes all filters

of compact support that are dual to ~h.

Theorem 4.6 Let h and ~h be dual filters with a finite support. A filter hl with finite support is

dual to ~h if and only if there exists a finite filter l such that

ĥl(!) = ĥ(!) + e�i!~̂h�(! + �)l̂�(2!): (4.52)

This theory proves that if fh; g;~h; ~gg are biorthogonal then we can construct a new set

of biorthogonal filters fhl; g; ~h; ~glg with

ĥl(!) = ĥ(!) + ĝ(!)l̂�(2!) (4.53)

and

~̂gl(!) = e�i!ĥl�(! + �) = ~̂g(!)� ~̂h(!)l̂(2!): (4.54)

The inverse Fourier transform of Equation (4.53) and (4.53) gives

hl[n] = h[n] +

+1X
k=�1

g[n� 2k]l[�k] (4.55)

and

~gl[n] = ~g[n]�
+1X

k=�1

~h[n� 2k]l[k]: (4.56)

The new filters are said to be lifted because the use of l can improve their properties. A

new set of biorthogonal wavelet bases can be derived from the lifted filter banks [80].
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Figure 4.7: The biorthogonal filter banks with a lifting and a dual lifting.

Let f�;  ; ~�; ~ g be a family of compactly supported biorthogonal scaling functions and

wavelets associated with the filter bank fh; g;~h; ~gg. Let l be a finite sequence. A new

family of biorthogonal scaling functions and wavelets f�l;  l; ~�; ~ lg is defined by

�l(t) =
p
2

+1X
k=�1

�
h[k]�l(2t� k) + l[�k] l(t� k)

�

 l(t) =
p
2

+1X
k=�1

g[k]�l(2t� k)

~ l(t) = ~ (t)�
+1X

k=�1
l[k] ~�(2t� k): (4.57)

If f�l;  l; ~�; ~ lg defined in Equation (4.57) have finite energy, then f lj;ng(j;n)2Zand f ~ l
j;ng(j;n)2Z

are biorthogonal wavelet bases of L2(Z).

The lifting increases the support size of  and ~ typically by the length of the support

of l. Design procedures compute minimum size filters l to achieve specific properties.

Section (4.4.2) points out that the regularity of � and  and the number of vanishing

moments of ~ is determined by the order of zeros of ~̂g(!) at ! = 0. The coefficients of

l[n] are often calculated to produce a lifted transfer function ~̂gl(!) with more zeros at
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! = 0.

To increase the number of vanishing moments of  and the regularity of ~� and ~ , we

use a dual lifting which modifies ~h and hence g instead of h and ~g. The corresponding

lifting formula with a filter L[k] are obtained by switching h with g and ~h with ~g in

Equation (4.55) and (4.56)

gL[n] = g[n] +

+1X
k=�1

h[n� 2k]L[�k] (4.58)

and

~hL[n] = ~h[n]�
+1X

k=�1
~g[n� 2k]L[k]: (4.59)

The resulting family of biorthogonal scaling functions and wavelets f�;  L; ~�L; ~ Lg can

be constructed in the similar way in Equation (4.57).

Successive iteration of lifting and dual lifting can improve the regularity and vanishing

moments of both  and ~ by increasing the order of zeros of ĝ(!) and ~̂g(!) at ! = 0. A

block diagram of biorthogonal filter banks with a lifting and a dual lifting is shown in

Figure (4.7).

Example: Lazy Wavelets Lazy filters ~h[n] = h[n] = Æ[n] and ~g[n] = g[n] = Æ[n�1] satisfy

the biorthogonality conditions (4.45). Their Fourier transforms are

~̂h(!) = ĥ(!) = 1 and ~̂g(!) = ĝ(!) = e�i!: (4.60)

The resulting filter bank just separate the even and odd samples of a signal without

filtering. The lazy scaling functions and wavelets associated with these filters are

~�(t) = �(t) = Æ(t) and ~ (t) =  (t) = Æ(t� 1

2
):

Apparently they do not belong to L2(R). These wavelets can be transformed into finite

energy functions by appropriate liftings.

A lifting of a lazy filter ~̂g(!) = e�i! yields

~̂gl(!) = e�i! � l̂(2!):
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To produce a symmetric wavelet ei! l̂(2!) must be even. It can be verified [81] that the

shortest l that lifts lazy wavelet to have 4 vanishing moments is defined by

l̂(2!) = e�i!
�
9

8
cos! � 1

8
cos 3!

�
:

Insert it in Equation (4.53) gives

ĥl(!) = � 1

16
e�3i! +

9

16
e�i! + 1 +

9

16
ei! � 1

16
e3i!:

The resulting �l is the Deslauriers-Dubuc [81] interpolating scaling function of order 4,

and  l(t) =
p
2�l(2t � 1). Both �l and  l are continuously differentiable but ~� and ~ l

are still sums of Diracs. A dual lifting can transform them into finite energy functions

by creating a dual lifted filter ĝL(!) with one or more zeros at ! = 0.

Any biorthogonal filters fh; g;~h; ~gg can be synthesized with a succession of lifting and

dual lifting applied to the lazy filters defined in Equation (4.60), up to shifting and mul-

tiplicative constants.

4.5 Separable Wavelet Bases

To any orthonormal wavelet basis f j;ng(j;n)2Z2 of L2(R), one can associate a separable

orthonormal basis of L2(R2),

f j1;n1(t1) j2;n2(t2)g(j1;n1;j2;n2)2Z4:

The functions  j1;n1(t1) j2;n2(t2) mix information at two different scales 2j1 and 2j2 along

t1 and t2, which we often want to avoid. Separable multiresolution leads to another con-

struction of separable wavelet bases whose elements are products of one dimensional

scaling functions and wavelets dilated at the same scale. These multiresolution approx-

imations also have important applications in computer vision, where they are used to

process images at different level of details. Lower resolution images are represented by

fewer pixels and might still carry enough information to perform a recognition tasks.
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Let fVjg; j 2 Z be a multiresolution approximation ofL2(R). A separable two-dimensional

multiresolution is composed of the tensor product spaces

V
2
j = Vj 
Vj:

Theory (4.1) shows the existence of a scaling function � such that f�j;ngn2Z is an or-

thonormal basis of Vj. By the classical theory of functional analysis, one can proves

that for t = (t1; t2) and n = (n1; n2)

�
�2j;n(t) = �j;n1(t1)�j;n2(t2)

	
n2Z2

is an orthonormal basis of V2
j . It is obtained by scaling the separable scaling function

�2(t) = �(t1)�(t2) and translating it onto a two dimensional grid with intervals of 2j.

Let W2
j be the detail space equal to the orthogonal complement of the lower resolution

approximation space V2
j in V2

j�1, i.e.,

V
2
j�1 = V

2
j �W2

j :

To construct a wavelet orthonormal basis of L2(R2), the following theory [70] builds a

wavelet basis of each detail space W2
j .

Theorem 4.7 Let � be a scaling function and  be the corresponding wavelet generating a

wavelet orthonormal basis of L2(R). We define three wavelets:

 1(t) = �(t1) (t2);  
2(t) =  (t1)�(t2);  

3(t) =  (t1) (t2); (4.61)

and denote for 1 � k � 3,

 k
j;n(t) =

1

2j
 k

�
t1 � 2jn1

2j
;
t2 � 2jn2

2j

�
: (4.62)

The wavelet family

f 1
j;n;  

2
j;n;  

3
j;ngn2Z2

is an orthonormal basis of W2
j and

f 1
j;n;  

2
j;n;  

3
j;ng(j;n)2Z3

is an orthonormal basis of L2(R2).
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(a) An image of toolbox (b) 2D wavelet decomposition of toolbox

Figure 4.8: Wavelet decomposition of a toolbox image

The three wavelets extract image details at different scales and orientations. Over pos-

itive frequencies, �̂ and  ̂ have an energy mainly concentrated respectively on lower

and higher frequencies. Let ! = (!1; !2), the separable wavelet expressions implies

that

 ̂1(!) = �̂(!1) ̂(!2);  ̂
2(!) =  ̂(!1)�̂(!2);  ̂

3(!) =  ̂(!1) ̂(!2): (4.63)

Hence j ̂1(!)j is larger at low horizontal frequencies !1 and high vertical frequencies

!2, j ̂2(!)j is larger at high horizontal frequencies !1 and low vertical frequencies !2,

whereas j ̂3(!)j is larger at high horizontal frequencies !1 and high vertical frequencies

!2. As a result, wavelet coefficients calculated with  1 and  2 are larger along edges

which are respectively horizontal and vertical, and  3 produces large coefficients at the

corners. This is illustrated by the decomposition of a toolbox image in Figure (4.8).

In the similar fashion, one-dimensional biorthogonal wavelet bases can also be ex-

tended to separable biorthogonal bases of L2(R2). let �; ~� and  ; ~ be two dual pairs of

scaling functions and wavelets that generate biorthogonal wavelet bases of L2(R). The

dual wavelets of  1,  2 and  3 defined by Equation (4.61) are

~ 1(t) = ~�(t1) ~ (t2); ~ 2(t) = ~ (t1)~�(t2); ~ 3(t) = ~ (t1) ~ (t2): (4.64)

It is easy to verify that

f 1
j;n;  

2
j;n;  

3
j;ng(j;n)2Z3
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and

f ~ 1
j;n;

~ 2
j;n;

~ 3
j;ng(j;n)2Z3

are biorthogonal bases of L2(R2).

It is possible to extend the fast one-dimensional wavelet transform algorithm to two

dimensions. Let f 2 L2(R2), at all the scales of 2j and for any n = (n1; n2), we denote

aj[n] =< f; �2j;n >

and

dkj [n] =< f;  k
j;n >; k = 1; 2; 3:

For any pair of one-dimensional filters y[n] and z[n], we write the product filter yz[n] =

y[n1]z[n2], and denote �y[n] = y[�n].
The wavelet coefficients at the scale 2j+1 are calculated from aj with two dimensional

separable convolutions and subsamplings. Let h and g be the conjugate mirror fil-

ters associated to the wavelet  . The decomposition formula are obtained by applying

the one-dimensional convolutional formula to the separable two-dimensional wavelets

and scaling functions. For n = (n1; n2),

aj+1[n] = aj ? �h�h[n]; (4.65)

d1j+1[n] = aj ? �h�g[n]; (4.66)

d2j+1[n] = aj ? �g�h[n]; (4.67)

d3j+1[n] = aj ? �g�g[n]: (4.68)

A separable two dimensional convolution can be factored into one-dimensional con-

volutions along with rows and columns of the images. The factorization is illustrated

in Figure (4.9a). The rows of aj are first convolved with �h and �g, and subsampled by 2.

The columns of these two output images are then convolved respectively with �h and �g

and subsampled, which gives four subsampled images aj+1, d1j+1, d2j+1 and d3j+1.

We denote �y[n] = �y[n1; n2] the image obtained by inserting a row of zeros and a column

of zeros between pairs of consecutive rows and columns of y[n1; n2]. aj is recovered

from the coarser scale approximation aj+1 and the wavelet coefficients d1j+1, d
2
j+1 and
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Figure 4.9: (a) A two-dimensional fast wavelet transform is computed with a cascade

of filters �h and �g followed by a factor 2 subsampling in rows and columns respectively.

(b) A two-dimensional fast inverse wavelet transform reconstructs progressively each

aj by inserting zeros between samples of aj+1 and dkj+1; k = 1; 2; 3, filtering and adding

the outputs along with rows and columns.
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d3j+1 with two-dimensional separable convolutions derived from the one-dimensional

reconstruction formula in Equation (4.37)

aj[n] = �aj+1 ? hh[n] + �d1j+1 ? hg[n] +
�d2j+1 ? gh[n] +

�d3j+1 ? gg[n]: (4.69)

These four convolutions can also be factored into six groups of one-dimensional con-

volutions along rows and columns, as illustrated in Figure (4.9b).

Let b[n] be an image whose pixels have a distance 2J = N�1. We associate to b[n] a

function f(x) 2 V2
J approximated at the scale 2J . Its coefficients aJ [n] =< f; �2J;n > are

discrete samples at scale of 2J

b[n] = NaJ [n] � f(N�1n):

The wavelet image representation of aJ is computed by iterating Equation (4.65-4.68)

for J < j � L:

[ fd1j ; d2j ; d3jgJ<j�L; aL ]

The original image aJ is recovered from this wavelet representation by iterating the re-

construction Equation (4.69) for J < j � L.

4.6 Signal Estimation in Wavelet Framework

In this section, we consider the problem of signal estimation in an additive noise model.

A signal f 2 I2(Z) of support size N is contaminated by the addition of a noise. This

noise is modeled by the realization of a zero mean random process W . The measured

data are

Z[n] = f [n] +W [n]; n 2 Z: (4.70)

The signal f is estimated by transforming the noisy observation Z with a decision op-

erator D, which is given by

f̂ = DZ: (4.71)
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A statistical approach usually assumes the knowledge of at least the probability distri-

bution of the noise process W . An optimal D is to then minimize the risk of the estima-

tor, which is the average loss calculated with respect to the probability distribution of

noise

r(D; f) = Efkf �DZkg: (4.72)

Linear operators have long predominated the solution to this problem because of their

simplicity, despite their limited performance.

The Bayes framework supposes that signals f are realizations of a random vector F

whose probability distribution � is a known prior. The Bayes risk is the expected risk

calculated with respect to the prior probability distribution � of the signal:

r(D; �) = E� (r(D; f)) : (4.73)

Then the Bayes estimation is to optimize D to minimize the expected risk r(D; �). It

is, however, generally not possible to have enough information to define this prior

probability distribution for a signal set with a complex structure. To overcome this

difficulty, one may call upon a minimax framework that applies a simpler model which

constrains signals in a prior set �. The goal is to then find an optimal operator which

minimizes the maximum risk over �, i.e.,

D = arg inf
D

r(D;�); (4.74)

where the maximum risk is given by

r(D;�) = sup
f2�

r(D; f): (4.75)

Except for a few special cases, minimax optimal operators are highly nonlinear and

difficult to find for real world applications. More often than not, one settles for a sub-

optimal estimator. This section studies particular estimators that are diagonal in an

orthonormal basis B = fgmg0�m<N . If the basis B defines a sparse signal representa-

tion, then such diagonal estimators are nearly optimal among all nonlinear estimators.

The noisy data

X = f +W (4.76)



CHAPTER 4. INTRODUCTION TO MULTISCALE ANALYSIS 78

is decomposed in B. We write

XB[m] =< X; gm >; fB[m] =< f; gm >; WB[m] =< W; gm > :

The inner product of Equation (4.76) with gm gives

XB[m] = fB[m] +WB[m]; 0 � m < N:

We assume that W is a zero-mean white noise of variance �2, then

EfWB[m]WB [p]g =

N�1X
n=0

N�1X
k=0

gm[n]gp[k]EfW [n]W [k]g

= �2 < gp; gm >

= �2Æ(p�m):

The noise coefficient is hence also a white noise of variance �2.

A diagonal operator estimates independently each fB[m] from XB[m] with a function

dm(x). The resulting estimator is

f̂ = DX =

N�1X
m=0

dm(XB[m])gm: (4.77)

If setting dm(0) = 0, we can write

dm(XB[m]) = a[m]XB [m]; 0 � m < N

where a[m] depends on XB[m]. The estimation risk

r(D; f) =

N�1X
m=0

EfjfB[m]� a[m]XB [m]j2g =
N�1X
m=0

jfB[m]j2(1� a[m])2 + �2a[m]2; (4.78)

is minimized by

a[m] =
jfB[m]j2

jfB[m]j2 + �2
(4.79)

and the minimum risk is

rinf(f) =

N�1X
m=0

jfB[m]j2�2
jfB[m]j2 + �2

: (4.80)

In practice, the attenuation factor a[m] in Equation (4.79) can not be computed since it

depends on jfB[m]j, whose value is not known. We hence refers to Equation (4.79) as
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an oracle attenuation.

The analysis of diagonal estimators can be simplified by restricting a[m] 2 f0; 1g. A

non-linear projector that minimizes the risk in Equation (4.78) is defined by

a[m] =

8<
: 1; jfB[m]j � �

0; otherwise
:

Similar to the case of Equation (4.79), this projector can not be implemented because

a[m] depends on the value of jfB[m]j. The risk of this oracle projector is computed with

Equation (4.78), and we obtain,

rp(f) =

N�1X
m=0

min(jfB[m]j2; �2): (4.81)

Since for any x; y > 0,

min(x; y) � xy

x + y
� 1

2
min(x; y);

we have

rp(f) � rinf(f) � 1

2
rp(f):

The risk of the oracle projector rp is of the same order as the risk of the oracle attenuation

(4.80). One can use the risk in (4.81) to verify the performance of practical thresholding

estimators.

Instead of depending on jfB[m]j, a feasible approach is to use jXB[m]j to determine an

appropriate projection. A diagonal estimator can be written as

f̂ = DX =

N�1X
m=0

dm(XB[m])gm:

A hard thresholding estimator is implemented with

dm(x) = �T (x) =

8<
: x; jxj � T

0; jxj < T
:

The risk of this thresholding is

rt(f) =

N�1X
m=0

EfjfB[m]� �T (XB[m])j2g: (4.82)



CHAPTER 4. INTRODUCTION TO MULTISCALE ANALYSIS 80

Since XB[m] = fB[m] +WB[m],

EfjfB[m]� �T (XB[m])j2g =
8<
: �2; jXB[m]j � T

jfB[m]j2; otherwise
:

Hence the risk of the hard thresholding estimator is larger than the risk of the oracle

projector,

rt(f) � rp(f) =

N�1X
m=0

min(jfB[m]j2; �2):

An oracle attenuation yields a risk rinf that is smaller than the risk of rp(f) of an oracle

projection, by slightly decreasing the amplitude for all coefficients in order to reduce

the added noise. A similar attenuation, although non-optimal, is implemented by a

soft thresholding, which decreases by T the amplitude of all noisy coefficients. This

soft thresholding function is given by

dm(x) = �T (x) =

8>>><
>>>:

x� T; x � T

x+ T; x � �T
0; jxj < T

:

It is the solution that minimizes a quadratic distance to the data, penalized by an l
1

norm. Given the data x[m], the vector y[m] which minimizes

N�1X
m=0

jy[m]� x[m]j2 + 2T

N�1X
m=0

jy[m]j

is y[m] = �T (x[m]). The threshold is generally chosen so that it is just above almost

all the noise coefficients. Since WB is a vector of N independent Gaussian random

variables of variance �2. By taking T = �

q
2 logNe , one can show that

lim
N!+1

P (max
m

(WB[m]) � T ) = 1:

The following theorem [82] proves that the risk of a thresholding estimator is close to

the risk of an oracle projector rp defined in Equation (4.81).

Theorem 4.8 Let T = �

q
2 logNe . The risk of a hard or soft thresholding estimator satisfies for

all N � 4

rt(f) � (2 logNe +1)(�2 + rp(f)):
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A filter bank tree of depth L� J > 0 decomposes a discrete signal in a discrete wavelet

basis defined in Section 4.3.

B =
� f�L[k � 2j�Jn]gn2Z; f j[k � 2j�Jn]gJ<j�L;n2Z

�
: (4.83)

is an orthonormal basis of I2(Z). A wavelet thresholding estimator can be written as

f̂ =

LX
j=J+1

+1X
m=�1

�T (< X; j;m >) j;m +

+1X
m=�1

�T (< X; �L;m >) j;m: (4.84)

where �T (�) is a hard or soft thresholding function. In a wavelet signal representation,

large amplitude coefficients correspond to transient signal variations, this means that

the thresholding estimation only keeps transients coming from the underlying signal,

without adding others due to the noise.

The threshold T = �

q
2 logNe is not optimal and in general a lower threshold reduces

the risk. A threshold adapted to the data is calculated by minimizing an estimation

of the risk. Denote rt(f; T ) the risk of a soft thresholding estimator calculated with a

threshold T . An estimate r̂t(f; T ) of rt(f; T ) is calculated from the noisy data X , and

T is optimized by minimizing r̂t(f; T ). To estimate the risk rt(f; T ), observe that if

jXB[m]j < T then the soft thresholding sets this coefficient to zero, which produces a

risk equal to jfB[m]j2. Since

EfjXB[m]j2g = jfB[m]j2 + �2;

one can estimate jfB[m]j2 with jXB[m]j2 � �2. If jXB[m]j � T , the soft thresholding

subtracts T from the amplitude of XB[m]. The expected risk is the sum of the noise

energy plus the bias introduced by the reduction of the amplitude of XB[m] by T . It is

estimated by �2 + T 2. The resulting estimator of rt(f; T ) is

r̂t(f; T ) =

N�1X
m=0

�(jXB[m]j2) (4.85)

with

�(u) =

8<
: u� �2; u � T 2

�2 + T 2; u > T 2
:
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It can be shown [82] that r̂t(f; T ) is a Stein Unbiased Risk Estimator (SURE) of rt(f; T ),

i.e. Efr̂t(f; T )g = rt(f; T ).

To find the T̂ that minimizes the SURE estimator r̂t(f; T ), the N data coefficients XB[m]

are sorted in decreasing amplitude order with O(N log2N) operations. Let Xr
B[k] =

XB[mk] be the coefficient of rank k : jXr
B[k] � jXr

B[k + 1]j for 0 � k < N � 2. Let l be the

index such that jXr
B[l + 1]j � T < jXr

B[l]j. We can rewrite Equation (4.85):

r̂t(f; T ) =

N�1X
k=l

jXr
B[k]j2 � (N � l)�2 + l(�2 + T 2): (4.86)

To minimize r̂t(f; T ), we must choose T = jXr
B[l+1]j because r̂t(f; T ) is increasing in T .

It is therefore sufficient to compare the N possible values, fjXr
B[k]jg0�k<N , to find the

T̂ that minimizes r̂t(f; T ), that requires O(N) operations if we progressively recompute

the formula (4.86). The calculation of T̂ is thus performed with O(N log2N) operations.

Although the estimator r̂t(f; T ) of rt(f; T ) is unbiased, its variance may induce errors

due to the noise energy, especially when kfk2 � EfkWk2g = N�2. In this case, one

must impose T = �
p
2 logeN in order to remove all the noise. Since EfkXk2g = kfk2+

N�2, we estimate kfk2 with kXk2�N�2 and compare this value with a minimum energy

level �N = �2N1=2(logeN)3=2. The resulting SURE threshold is

T =

8<
: �

p
2 logeN; kXk2 �N�2 � �N

T̂ ; kXk2 �N�2 > �N
:

Let � be a signal set and minT rt(�) be the minimax risk of a soft thresholding obtained

by optimizing the choice of T depending on �. Donoho and Johnstone [82] prove that

the threshold computed empirically with the above equations yields a nearly minimax

risk.

Figure (4.10) demonstrates the estimation result of a noisy piecewise smooth signal

with a soft threshold estimator with the SURE threshold T .
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Original Signal Noisy Signal Estimated Signal
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Figure 4.10: Estimation results of a noisy piecewise smooth signal with a soft threshold

estimator with the SURE threshold T .
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CHAPTER

5

Multiscale Signal En-

hancement: Beyond

the Normality and In-

dependence Assump-

tion

C
URRENT approaches to denoising or signal enhancement in wavelet-based frame-

work have generally relied on the assumption of normally distributed perturba-

tions. In practice, this assumption is often violated and sometimes, even prior infor-

mation of probability distribution of the noise process is not available. To relax this

assumption, we propose a novel non-linear filtering technique in this section. The key

idea is to project a noisy signal onto a wavelet domain and to suppress wavelet co-

efficients by a mask derived from curvature extrema in its scale space representation.

For a piecewise smooth signal, it can be shown that filtering by this curvature mask is

equivalent to preserving the signal pointwise Hölder exponents at the singular points

and lifting its smoothness at all the remaining points.
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5.1 Introduction

Inspired by the fact that the human visual system processes and analyzes image in-

formation at different scales, researchers have made extensive use of the multiscale

analysis in signal and image processing applications. Wavelet theory has played a par-

ticularly important role in multiscale analysis due to the fact that the basis functions

are well suited to analyze local scale phenomena. This property also endows wavelets

with a remarkable property for denoising in a wavelet based framework.

Donoho and Johnstone [7] first showed that effective noise suppression may be achieved

by wavelet shrinkage. Given the noisy wavelet coefficients, i.e. the true wavelet coef-

ficients plus a noise term, and assuming that one has knowledge of the true wavelet

coefficients, an ideal filter sets a noisy coefficient to zero if the noise variance �2 is

greater than the square of the true wavelet coefficient; otherwise the noisy coefficient

is kept. In this way, the mean square error of this ideal estimator is the minimum of �2

and the square of the coefficient. Under the assumption of i.i.d. normal noise, it can

shown that a soft thresholding estimator achieves a risk at most O(logM) times the risk

of this ideal estimator, where M is the length of the observation.

To choose an appropriate threshold, Donoho and Johnstone [7] have taken a mini-

max approach to characterize the signal, and they proved, by setting a threshold T =

�
p
2 logeM , that the estimation risk is close to the minimax risk. Krim and Pesquet [8]

have given an alternative derivation for this threshold, using Rissanen’s Minimum De-

scription Length (MDL) criterion [9] and the assumption of normally distributed noise.

The threshold T increase with M is due to the tail of the Gaussian distribution, which

tends to generate larger noise coefficients when sample size increases. This thresh-

old is not optimal, and in general a lower threshold reduces the risk. To refine the

threshold, a SureShrink [10] procedure is proposed. Sureshrink calculates thresholds

by the principle of minimizing the Stein unbiased estimate of risk for threshold esti-

mates. SureShrink is also based on the assumption of i.i.d. normal noise. For non-

Gaussian type of noise, Neumann [11], Averkamp and Houdre [12] studied the choice

of thresholds by having recourse to asymptotics. Wavelet thresholding theory is, how-
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ever, based on the assumption that we know the statistics of the noise to determine an

adequate threshold. This makes the algorithm less flexible and less adaptive to differ-

ent scenarios which can result in an even worse reconstruction. Compensation for the

lack of a prior knowledge of the noise statistics may be handled by adopting the mini-

max principle [13] upon deriving the worst case noise distribution.

Points of sharp variations are often among the most important features for analyzing

properties of transient piecewise smooth signals. To characterize the singular struc-

tures, Hölder exponents [14] provide a pointwise measure of a function over a time

interval. Due to the pioneering work by Jaffard [15] and Meyer [16], it can be shown

that a local signal singularity of a function is characterized by the decay of its wavelet

transform amplitude across scales.

In this paper we first reinterpret the denoising problem as one of having to adjust the

pointwise smoothness of noisy data, and propose a novel non-linear estimator as a re-

sult. The key idea is to separate out the signal portion from its noisy data to preserve

the original smoothness property of the underlying signal, while the remaining noisy

data admits the same Hölder exponents as the noise. This non-linear filter would be

optimal in the sense of recovering the smoothness of the true underlying signal.

A crucial step for realizing such a smoothness-constrained filter is to identify the sin-

gularities of the true signal. We tackle this problem with the theory of curve evolu-

tion [83, 84], which is inherently geometric in nature, and widely used in computer

vision [85, 86] and image processing [87]. The basic idea is that a planar curve deforms

in the direction of its Euclidean normal, with a speed equal to its curvature. The noise

riding on the signal has relatively higher curvatures in comparison to the underlying

signal. It thus tends to be smoothed much faster than the latter. This disparity in evo-

lution speed [38] is key to preserving the true features of the signal.

With the knowledge of the singularities, we proceed to generate a multiscale curvature

mask to filter the wavelet transform of the noisy data. Specifically, we prove that filter-

ing the transform by a curvature mask is equivalent to keeping the pointwise Hölder

exponent of the noisy data at singular points, and lifting its smoothness at all the re-
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maining points. In addition, residual data (noisy data minus estimate) admits the same

Hölder exponents as the noise except at the singular points of the signal.

In the section that follows, we briefly introduce the concept of Hölder exponent and

regularity measurement with wavelets. In Section 5.3, we give a concise statement

of the problem. In Section 5.4, we derive the singularity detection algorithm through

curve evolution. In Section 5.5, we formally define the smoothness-constrained filter,

propose its implementation and verify its properties. Some numerical results appear in

Section 5.6. Finally, we provide concluding remarks in Section 5.7.

5.2 Regularity measurement with wavelets

To characterize singular structures, it is necessary to precisely quantify the local reg-

ularity of a signal. Hölder spaces and Hölder exponent provide a uniform regularity

measurement over time intervals, as well as at a particular point.

Definition 5.1 Let I � R and f be a continuous function from I to R. f is said to belong to a

global Hölder space C�(I); � > 0 if and only if for any v 2 I there exists a positive constant c

and a polynomial Pv of degree m = b�c, b�c denotes the largest integer m � �, such that

jf(x)� Pv(x� v)j � cjx� vj�; 8x 2 I:

Definition 5.2 f is said to belong to a pointwise Hölder space C�(x0); � > 0; x0 2 I if and

only if there exists a positive constant c and a polynomial Px0 of degree m = b�c such that

jf(x)� Px0(x� x0)j � cjx� x0j�; 8x 2 I:

Definition 5.3 A function f is said to have a Hölder exponent � at point x0 if there exists a

polynomial Px0 of degree m = b�c and f satisfies

� for any � < �,

lim
�!0

jf(x0 +�)� Px0(�)j
j�j� = 0
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� if � < +1, for any � > �

lim
�!0

jf(x0 +�)� Px0(�)j
j�j� = +1:

The vanishing moment property of a wavelet function is crucial to measure the local

regularity of a signal. If a wavelet  (�) has n vanishing moments, i.e.Z +1

�1
tk (t)dt = 0; 0 � k < n; (5.1)

it can be shown [70] that the wavelet transformation is actually a multiscale differential

operator of order n. This nice property relates the differentiability of f with its wavelet

transform decay at fine scales.

Due to the pioneering work by Meyer [16] and Jaffard [15], it can be shown that a lo-

cal signal singularity is characterized by the decay of its wavelet transform amplitude

across scales.

Theorem 5.1 [15] Let  (�) be a wavelet with n vanishing moments, f 2 L2(R) and Wf(�; �)
denotes its wavelet transform. Suppose f has a Hölder exponent � < n at x, then there exists a

constant A such that

8(u; s) 2 R � R
+ ; jWf(u; s)j � As�+

1

2 (1 + ju� x

s
j�):

Conversely, if � < n is not an integer and there exists a constant A and �0 < � such that

8(u; s) 2 R � R
+ ; jWf(u; s)j � As�+

1

2 (1 + ju� x

s
j�0):

then f is Hölder � at x.

5.3 Problem Formulation

A signal f 2 L2(R) is contaminated by the addition of a noise. This noise is modeled

by the realization of a zero mean random process fNg. The measured data are

Z(x) = f(x) +N(x); x 2 R: (5.2)
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The signal f is estimated by transforming the noisy observation Z with a decision op-

erator D, which is given by

f̂ = DZ: (5.3)

A statistical approach usually assumes the knowledge of at least the probability dis-

tribution of the noise process fNg, and maybe a prior distribution of the signal. An

optimal D is to then minimize the risk of the estimator, which is the average loss calcu-

lated with respect to the probability distribution of noise

r(D; f) = Ef�(f �DZ)g; (5.4)

where �(�) is a cost function. It is, however, generally not possible to have enough

information to define this prior probability distribution for a signal set with complex

structure. To overcome this difficulty, one may call upon a minimax framework that

applies a simpler model which constrains signals in a prior set �. The goal is to then

find an optimal operator which minimizes the maximum risk over �, i.e.,

D = arg inf
D

r(D;�); (5.5)

where the maximum risk is given by

r(D;�) = sup
f2�

r(D; f): (5.6)

Except for a few special cases, minimax optimal operators are highly nonlinear and dif-

ficult to find for real world applications. More often than not, one settles for a subopti-

mal estimator. The well known thresholding estimator in an orthonormal wavelet basis

proposed by Donoho and Johnstone [10] has a suboptimal risk rt(�) � (logeM)rmin(�)

for the set of piecewise smooth signals, where M is the observation length and rmin(�)

is the minimax risk.

In this paper, we propose a novel nonlinear filtering technique. Contrary to statistical

methods, we assume that a prior knowledge about pointwise smoothness measure of

the signal is known or can be extracted. However, this smoothness property of the sig-

nal is corrupted by additive noise, which in general has a uniform Hölder exponent less



5.4. CURVE EVOLUTION AND SINGULARITY DETECTION 91

than 1. As noted earlier, we view the denoising problem as one of carefully controlling

the Hölder exponents of measured data with a goal of extracting the signal portion with

some smoothness fidelity to the original. Let �f (�) and �N(�) characterize the pointwise

Hölder exponent of f(�) andN(�) respectively. A ideal operator T satisfies the following

two conditions:

� f̂ = TZ admits �f(�) as its pointwise Hölder exponent

� V (x) = Z(x)� f̂(x) admits �N(�) as its pointwise Hölder exponent

This non-linear filter is optimal in the sense of recovering the smoothness of the true

underlying signal.

5.4 Curve evolution and singularity detection

Singularities and irregular structures often carry the most important information in

signals. Many researchers [88], [89], [90], [91] and [92] have developed singularity de-

tection techniques based on multiscale transforms. In this Section, we discuss the evo-

lution of a planar curve in Euclidean space, in which the planar curve evolves in the

direction of its Euclidean normal, with a speed equal to its local curvature. Using the

well known foundation of such an evolution, we proceed to derive the partial differen-

tial equations that characterize the evolution of curvature. We subsequently propose a

new singularity detection method by tracking the curvature extrema across scales.

Let C(�; 0) : S1 ! R
2 be a smooth planar curve in a Euclidean space, then a geometric

curve flow [83] [93], C(s; t) : S1 � [0; T )! R
2 , is characterized by the following partial

differential equation
@C

@t
= kN

where t denotes the scale, k is the curvature of C, and N is its unit normal vector. This

geometric curve flow is illustrated in Figure (5.1).

If we restrict the curve in Cartesian coordinates in R
2 so that C = (x; y) is locally
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Figure 5.1: A geometric curve flow.

a graph, and require points to fix their x-coordinate during evolution, then we get a

different flow y(x; t) : R � [0; T )! R that can be represented as8<
:

@y(x;t)

@t
= k(x; t) sec �(x; t)

y(x; 0) = y0(x)
(5.7)

where y0(�) is an initial smooth curve in cartesian coordinates, �(x; t) = tan�1(y0(x; t)),

“ 0 ” denotes differentiation with respect to x, and k(x; t) is the curvature given by

k =
y00

(1 + y02)3=2
: (5.8)

The modification term for vertical speed is sec �

sec � = [(1 + y02]1=2: (5.9)

Substituting Equations (5.8) and (5.9) into (5.7), we obtain an evolution of y for a fixed

x,
@y

@t
=

y00

1 + y02
: (5.10)

In addition, if jy0j is bounded, Grayson [83] showed k(x; t), as a result, also evolves

according to equation
@k

@t
=

k00

1 + y02
+ k3: (5.11)

Curvature is a natural indication of sharp variations in a signal. When a signal is con-

taminated by an additive noise, it makes sense to detect the singularities by tracking
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the curvature extrema across curve evolution. Equation (5.11) indicates that the noise

riding on the signal has relatively higher smoothing evolution speed in comparison to

the underlying features. It thus tends to be “washed” away much faster than the latter.

This disparity in evolution speed is key to extracting the true features of the signal. To

obtain an accurate estimate of singularity, we also have to ensure that no new local ex-

trema can be created during the curve evolution, which is generally referred to as the

Causality property. The following proposition validates this requirement.

Proposition 5.1 New extrema of y and k can not be created in passing from fine to coarse

scales, i.e., for any t1 > t0 > 0, all the extrema points of y(�; t1) and k(�; t1) are extrema points

in y(�; t0) and k(�; t0).

Proof: Applying the Maximum Principle [94], if jy0j is bounded, it follows directly that

new maxima and minima of y and k can not be created as a curve evolves by equation

(5.10). In fact, by lemma 1.9 in [83], we can show that for a given choice of cartesian

coordinates, local minima of y and k increase with time, and local maxima decrease.

Furthermore, the points of the curve where y and k reach their local minima and max-

ima vary continuously with time.

A test signal defined on interval [0; 1] is shown in Figure 5.2(a). By evolving it, we have

the curvature variation across scales as illustrated in Figure 5.2(b), and the curvature

extrema propagation line across evolution scales in Figure 5.2(c). Then we define a

function L(x) to denote the length of extrema propagation line originated at x 2 [0; 1]

and a set 
 = fx : L(x) > Tg. T is a threshold and we set it to be half of the length

of the longest propagation line of curvature extrema. Finally we define a singularity

indicator function p(�) as

p(u) =
X
xi2


Æ(u� xi): (5.12)
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Figure 5.2: Singularity detection by tracking curvature extrema through curve evolu-

tion

5.5 A smoothness constrained filter

Let f 2 L
2(R) be a piecewise smooth signal. Its observation Z(�) is modeled as in

Equation (5.2). Let  (x) be a compact support wavelet with n vanishing moments and

WZ(s; u) denote the continuous wavelet transformation of Z(�), which is given by

WZ(s; u) = Z(x) ?  s;u(x) (5.13)

where  s;u(x) = 1p
s
 (x�u

s
):

By tracking curvature extrema through curve evolution of measured data Z(�), we get

a singularity indicator function p(�) as defined in Equation (5.12).

Let

�(u) =

8<
: exp ( �u

2

1�u2 ); juj < 1

0; juj � 1
: (5.14)

and C be the support of  (�). Then we define
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Figure 5.3: Clean signals of Blocks, Bumps, HeaviSine and Doppler

q(s; u) = p(u) ? �(
u

Cs
); s > 0:

and a multiscale mask is given by

h(s; u) =

8<
: q(s; u); if q(s; u) < 1

1; otherwise:
(5.15)

Since this mask is derived from curvature extrema, we call it a multiscale curvature

mask. Then a smoothness constrained filter T for piecewise smooth signals may be

defined as

f̂(x) = TZ(x) = W�1fWZ(s; u)h(s; u)g; (5.16)

where W�1 denotes the inverse wavelet transform.

To analyze the property of this filter, we first investigate the pointwise Hölder expo-

nents of the measured data Z(�).
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Figure 5.4: Gaussian noise corrupted signals of Blocks, Bumps, HeaviSine and Doppler

Proposition 5.2 Let f 2 L2(R) be a piecewise smooth signal and N(�) denote a realization of

a zero mean noise process. Suppose �N (�) characterize the pointwise Hölder exponent of N(�),
then the measured data Z = f +N admits �N(�) as its pointwise Hölder exponent except at the

singular points of f .

Proof: : see Appendix A

An ideal smoothness constrained filter, as noted earlier, is to isolate and localize the sig-

nal portion within the measured data. The following results establish that filtering by

a multiscale curvature mask as defined in Equation (5.16) is equivalent to keeping the

signal pointwise Hölder exponents at the singularity points of f and lifting its smooth-

ness at all the remaining points.

Proposition 5.3 Let f; g 2 L
2(R) and  (�) be a compact support wavelet with n vanishing

monents, and Wf(�; �); Wg(�; �) be the wavelet transforms of f and g respectively. Suppose
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Figure 5.5: Denoising results by SureShrink for Gaussian noise corrupted signals

�f(�) and �g(�) are pointwise Hölder expontent functions of f; g and satisfy

�f (x) < n; �g(x) < n; �f (x) + �g(x) < n; x 2 R

then

y = W�1fWf(s; u)Wg(s; u)g; (s; u) 2 R
+ � R

admits �f (x) + �g(x) +
1
2

as its pointwise Hölder exponent for any x 2 R.

Proof: : see Appendix A

Proposition 5.4 Let  (�) be a wavelet of compact support and with n vanishing monents.

Consider the multiscale curvature mask as defined in Equation (5.15) and denote

y = W�1fh(s; u)g; (s; u) 2 R
+ � R

then y belongs to the Hölder space Cn(R) almost everywhere.
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Figure 5.6: Multiscale curvature mask for (a) Blocks, (b) Bumps, (c) HeaviSine and (d)

Doppler

Proof: : see Appendix A

Proposition 5.5 Let  (�) be a wavelet of compact support and with n vanishing monents. Let

f 2 L2(R) be a piecewise smooth signal. Its measured data Z(�) is modeled as in Equation (5.2).

Suppose �N(�) characterizes the pointwise Hölder exponent of N(�). Let T be a smoothness

constrained filter as defined in Equation (5.16) and f̂ = TZ. Then V = Z � f̂ admits �N(�) as

its pointwise Hölder exponent and f̂ belongs to the Hölder space Cn(I) except at the singular

points of f where pointwise Hölder exponents of measured data Z(�) are preserved.

Proof: : see Appendix A
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Figure 5.7: Filtering results by the smoothness constrained filter for Gaussian noise

corrupted signals

5.6 Numerical Experiments

Four piecewise smooth signals, Blocks, Bumps, HeaviSine and Doppler are shown in Fig-

ure (5.3). These signals represent various spatially nonhomogeneous phenomena and

are widely used in simulations of Wavelet Shrinkage methods.

Figure (5.4) displays these signals corrupted by white Gaussian noise. The signal to

noise ratio is 16:9dB. Figure (5.5) shows the denoising results of Wavelet SureShrink [10]

technique. By searching for the singular points of the signal from noisy data, we

proceed to generate the multiscale curvature mask for the test signals as shown in

Figure(5.6). Figure (5.7) demonstrates the results by the smoothness constrained filter

as described in Section V. Compared to Wavelet SureShrink technique, our smoothness

constrained filter preserves singularities of the underlying signals better and recov-

ers the smoothness between singular points better. Filtering by a multiscale curvature
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Figure 5.8: Adjustment of the wavelet transform amplitude decay across scales by

smoothness constrained filter

mask is equivalent to keeping the signal pointwise Hölder exponents at the singular

points of f , and lifting its smoothness at all the remaining points. This effect is demon-

strated in Figure (5.8), which shows the adjustment of the wavelet transform amplitude

decay of the noisy observation of the test signal Blocks at fine scales. As we can see in the

filtered data, the wavelet transform amplitude decay at t0 = 0:65, which corresponds

to a singular point in Blocks, is preserved, and the decay at t0 = 0:29, which is smooth

in Blocks, is lifted.

In the non-Gaussian noise case, we test the above four signals which contaminated by

Laplacian noise with SNR of 16:9dB. Figure(5.9) shows the Laplacian corrupted noisy

signals and Figure (5.10) demonstrates the denoising results from our proposed filter

and Figure (5.11) shows the results from standard SureShrink techniques1. Laplacian

1Fully realizing SureShrink was not optimal for an non-Gaussian noise, this is used to merely illustrate

our technique.
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Figure 5.9: Laplacian noise corrupted signals of Blocks, Bumps, HeaviSine and Doppler

distribution has a heavier tail than Gaussian distribution which makes spurious spikes

on noisy signals more likely. Wavelet Shrinkage methods are not robust to heavy tail

noise, as we can see in the denoising result of SureShink, some spurious spikes are kept.

However, performance of the proposed filter is not degraded as demonstrated in Fig-

ure (5.10).

Since the smoothness constrained filter preserves the decay of the wavelet transform

amplitude at the singular point of f , it has the advantage of singularity preservation.

In Figure (5.12), we test a planar shape, B-52 contour, with the proposed filter to further

demonstrate this desired property. Figure (5.12c) shows the result shape by our filter, in

comparison with the result from a low pass Gaussian filter in Figure (5.12d), it is clear

that the features of the shape is better preserved by the smoothness constrained filter.

It is important to note that our derivation does not rely on any statistical independence

assumption, and can hence be extended to images. Suppose an image can be viewed

as a differentiable function z 2 L
2(R2), then we can generalize the curve evolution
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Figure 5.10: Filtering results by the smoothness constrained filter for Laplacian noise

corrupted signals

equation (5.10) to two-dimensional case, z(x; y; t) : R2 � [0; T )! R.8<
:

@z(x;y;t)

@t
=

zxx+zyy
1+z2x+z

2
y
= �z

1+krzk2

z(x; y; 0) = z0(x; y)
(5.17)

where z0 is an initial smooth image in Cartesian coordinates. Applying the Maximum

Principle, it follows directly that if krzk2 is bounded, new extrema can not be created

as z0 evolves from fine to coarse scales. We therefore can find the true edges of z0 by

tracking the propagation line of its extrema across scale. Then, similarly to Section IV,

we define L(x; y); (x; y) 2 R
2 to be the length of extrema propagation line originating

at (x; y), and the set 
 = f(x; y) : L(x; y) > Tg to represent the detected edge points. T

is a threshold which we set to be half of the length of the longest extrema propagation

line. Finally we define a edge indicator function p(�; �) as

p(u1; u2) =
X

(xi;yi)2

Æ(u1 � xi; u2 � yi): (5.18)
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Figure 5.11: Denoising results by SureShrink for Laplacian noise corrupted signals

Consider an additive noise observation model, an image f 2 L2(R2) contaminated by

addition of a noise. This noise is modeled by the realization of a zero mean random

process fNg, i.e.,

Z(x; y) = f(x; y) +N(x; y); (x; y) 2 R
2 : (5.19)

Let  (�) be a compactly supported wavelet with n vanishing moments. We define a two

dimensional separable wavelet  (x; y) =  (x) (y) and denote

 s1;u1;s2;u2
(x; y) =  s1;u1(x) s2;u2(y); s1; s2 > 0; (u1; u2) 2 R

2 :

Let WZ(s1; u1; s2; u2) denote the wavelet transformation of Z(x; y), which is given by

WZ(s1; u1; s2; u2) = Z(x; y) ? s1;u1;s2;u2
(x; y): (5.20)

By setting z0(x; y) = Z(x; y) in equation (5.17), an edge indicator function of the under-

lying image f can be obtained as in equation (5.18). With this edge indicator function,
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Figure 5.12: Denoising shapes by the smoothness constrained filter. (a) Shape B-52 con-

tour; (b) noise corrupted shape; (c) Resulting shape by the proposed filter; (d) Resulting

shape by the low pass Gaussian filter.

we can proceed to generate a two-dimensional multiscale mask. Let

�(u1; u2) =

8<
: exp (� u2

1
+u2

2

1�u2
1
�u2

2

); u21 + u22 < 1

0; u21 + u22 � 1
:

Then we define

q(s1; u1; s2; u2) = p(u1; u2) ? �(
u1

Cs1
;
u2

Cs2
); s1; s2 > 0;

where C is the support of  (�). A two-dimensional multiscale mask can be given by

h(s1; u1; s2; u2) = min( q(s1; u1; s2; u2); 1 );

and the resulting filter for images may be defined as

f̂(x; y) = W�1
2 fWZ(s1; u1; s2; u2)h(s1; u1; s2; u2)g



5.7. CONCLUSION 105

where W�1
2 denotes a 2-D inverse wavelet transform.

Figure (5.13a) displays an original image bar girl, which is well known in the image

processing literature. Figure (5.13b) shows the Gaussian noise corrupted image with a

signal to noise ratio of 9:53dB. By searching for the edge points of bar girl from noisy

data as described in equation (5.17), an edge indicator function, displayed in Figure

(5.13c), is obtained. We proceed to generate an two-dimensional mutliscale mask with

this edge indicator function. Figure (5.13e) demonstrates the result by our proposed

filter. The SNR is improved to nearly 3dB. For non-Gaussian distributed noise, Fig-

ure (5.13f) displays a Laplacian noise corrupted image with a SNR of 9:54dB. With the

same procedure, the result by the proposed filter is shown in Figure (5.13f). In this case,

the signal to noise ratio is increased to 12:44dB. By the same argument for 1-D smooth-

ness constrained filter, filtering by 2-D multiscale mask is equivalent to keeping image

pointwise Hölder exponents at the edge points of the underlying image and lifting its

smoothness at all the remaining points.

5.7 Conclusion

In this chapter, we proposed a novel non-linear smoothness constrained filtering tech-

nique. The key idea is to separate the signal portion out of its measured data, and to

preserve the original smoothness property of the underlying signal. We first briefly

reviewed the definition of Hölder space, Hölder exponent and established results of

signal regularity measurement with wavelets. To detect the singular points of signal

from measured data, we turned to curve shortening and derived the partial differen-

tial equations that characterize the evolution of curvature. A new singularity detection

method by tracking the curvature extrema across scales is proposed and a multiscale

curvature mask is generated. Then we proceed to project measured data into wavelet

domain and suppress wavelet coefficients by this multiscale curvature mask. For a

piecewise smooth signal, it can be shown that filtering by this curvature mask is equiv-
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alent to keeping the signal pointwise Hölder exponents at the singular points of the

underlying signal and lifting its smoothness at all the remaining points. An extension

of the non-linear smoothness constrained filter to image processing is studied at the

end of this paper. Numerical experiments demonstrated that our approach is effective

and efficient.

5.8 Appendix

Proof of Proposition 5.2

Suppose x 2 R is not a singular point.

Let � = �N(x), then there exists a polynomial PNx(�) of degree m = b�c such that

lim
�!0

jN(x+�)� PNx(�)j
j�j� = 0; � < �;

lim
�!0

jN(x +�)� PNx(�)j
j�j� = +1; � > �:

Since f(�) is a piecewise smooth signal, f is infinitely differentiable at x and there exists

a polynomial Pfx(�) of degree m = b�c for any � > 0 such that

lim
�!0

jf(x+�)� Pfx(�)j
j�j� = 0:

Let PZx = PNx + Pfx.

� For any � < �,

lim
�!0

jZ(x+�)� PZx(�)j
j�j�

� lim
�!0

jf(x+�)� Pfx(�)j
j�j�

+ lim
�!0

jN(x +�)� PNx(�)j
j�j� = 0:
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� For any � > �,

lim
�!0

jZ(x+�)� PZx(�)j
j�j�

� lim
�!0

jN(x +�)� PNx(�)j
j�j�

� lim
�!0

jf(x+�)� Pfx(�)j
j�j� = +1:

By the definition of Hölder exponent, we conclude that Z(x) admits �N (x) for all x 2 R

except the singular points of f .

Proof of Proposition 5.3

f is Hölder �f(x) < n at x, we have

8(s; u) 2 R
+ � R;

jWf(s; u)j � As�f (x)+
1

2 (1 + ju� x

s
j�f (x)):

g is Hölder �g(x) < n at x, we have

8(s; u) 2 R
+ � R;

jWg(s; u)j � As�g(x)+
1

2 (1 + ju� x

s
j�g(x)):

therefore,

jWf(s; u)Wg(s; u)j � As�f (x)+�g(x)+1(1 +

ju� x

s
j�f (x) + ju� x

s
j�g(x) + ju� x

s
j�f (x)+�g(x)):

Let

ju� x

s
j�0 = max(ju� x

s
j�f (x);

ju� x

s
j�g(x); ju� x

s
j�f (x)+�g(x))

and it is then clear that �0 < �f (x) +�g(x) +
1
2
. Then we can rewrite the above equation

as

jWf(s; u)Wg(s; u)j � As�f (x)+�g(x)+1(1 + ju� x

s
j�0):

by theorem 5.1 we conclude that

y = W�1fWf(s; u)Wg(s; u)g



CHAPTER 5. MULTISCALE SIGNAL ENHANCEMENT 108

admits �f (x) + �g(x) +
1
2

as its pointwise Hölder exponent for any x 2 R.

Proof of Proposition 5.4

We first introduce without proof a theorem from Meyer [16] and Mallat [70].

Theorem 5.2 Let  (�) be a wavelet with n vanishing moments and f 2 L
2(R) belongs to a

global Hölder space C�(a; b), and Wf(�; �) denotes its wavelet transform. Then there exists a

constant A > 0 such that

8(s; u) 2 R
+ � (a; b); jWf(s; u)j � As�+

1

2 : (5.21)

Conversely, suppose f is bounded and Wf(s; u) satisfies equation (5.21) for an � < n that is

not an integer. Then f belongs to the global Hölder space C�(a+ �; b� �) for any � > 0.

Let 
 = fxigN�1i=1 be the set of all the singular points of f . For convenience, denote

x0 = �1 and xN = +1. Observe that for any � > 0, there exists s0 such that

h(s; u) = 0; 8s < s0; u 2 (xi + �; xi+1 � �);

i = 0; 1; :::N � 1: Therefore, by an appropriate choice of A, we obtain

jh(s; u0)j � Asn+
1

2 ; 8(s; u) 2 R
+ � (xi + �; xi+1 � �);

i = 0; 1; :::N � 1: This concludes the proof of proposition 5.4.

Proof of Proposition 5.5

Let 
 = fxigN�1i=1 be the set of all the singular points of f and denote x0 = �1 and

xN = +1. By propositions 5.3 and 5.4, it follows directly that f̂ belongs to the global

Hölder space Cn(xi+ �; xi+1� �) for any � > 0; i = 0; 1; :::N � 1: Let v = xi and suppose

the pointwise Hölder exponent of Z at v is �, then 8(s; u) 2 R
+ � R;

jŴf(s; u)j = jWZ(s; u)h(s; u)j
� As�+

1

2 (1 + ju� v

s
j�0 ):
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Hence, the pointwise Hölder exponents of measured data Z(�) are preserved at the

singular points of f . Let V = Z � f̂ . Observe for any � > 0, there exists s0 such that for

all s < s0;

u 2 (xi + �; xi+1 � �); WV (s; u) =WZ(s; u);

and for all s � s0;

u 2 (xi + �; xi+1 � �); WV (s; u) � WZ(s; u);

i = 0; 1; :::N � 1: By proposition 5.2 and theorem 5.1, V (�) admits �N (�) as its pointwise

Hölder exponent except at the singular points of f . This concludes the proof of proposi-

tion 5.5.
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 (a)  (b) 

 (c)  (d) 

 (e)  (r) 

Figure 5.13: (a) Original bar girl; (b) bar girl plus Gaussian noise; (c) Edge points ex-

tracted from noisy image; (d) Filtered result from the Gaussian noise corrupted image;

(e) bar girl plus Laplacian noise; (f) Filtered result from the Laplacian noise corrupted

image;



CHAPTER

6
A Multiscale Ap-

proach for Pixel-Level

Image Fusion

6.1 Introduction

W
ITH the development of new imaging sensors arises the need for image pro-

cessing techniques that can effectively fuse images from different sensors into

a single composite entity for interpretation. Fusion begins with two or more registered

images that contain different representations of the same scene. They may come from

different viewing conditions, or even different sensors (visible and IR, CT and MRI,

etc.). Image fusion of multiple sensors in a vision system could significantly reduce

human/machine error in detection and recognition of objects due to the inherent re-

dundancy and extended coverage. For example, fusion of forward looking infrared

(FLIR) and low light television images (LLTV) obtained by an airborne sensor platform

would aid a pilot to navigate in poor weather conditions.

The actual fusion process can take place at different levels of information represen-

tation. A generic categorization is to consider the different processes at signal, pixel,

feature and symbolic levels [23]. We focus on the so-called pixel level fusion pro-

cess, where a composite image has to be constructed from several input images. Some

111
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Figure 6.1: A general framework for multiscale fusion with wavelet transform

generic requirements must be imposed on the fusion result. The fusion process should

preserve all relevant information of the input imagery in the composite image (pattern

conservation). The fusion scheme should not introduce any artifacts or inconsistencies

which would distract a human observer or the following processing stages (Causality).

Over the past two decades, a wide variety of pixel-level image fusion algorithms has

been developed. These techniques may be classified into linear superposition, logical

filter [17], mathematical morphology [18], image algebra [19] [20], artificial neural net-

work [21], and simulated annealing [22] methods. Each of these algorithms focuses on

the fact that the fused image reveals new information concerning features that can not

be perceived in individual sensor images. However, some useful information has been

discarded since each fusion scheme tends to emphasize different attributes of the im-

age. Luo [23] provides a detailed review of these techniques.

Inspired by the fact that the human visual system processes and analyzes image in-

formation at different scales, researchers recently proposed a multiscale based fusion

method which is widely accepted [24] as one of the most effective techniques for im-

age fusion. A multicale transform, which may be a pyramid or wavelet transform, is

first calculated for each input image, then a composite is formed by selecting the coeffi-

cients from the multicale representations of all the source images. Finally, a fused image

is recovered through an inverse transformation. In the pioneering work of Burt [28], a

Laplacian pyramid and a “choose max” rule is proposed as a model for binocular fu-
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sion in human stereo vision. For each coefficient in the pyramids of source images, the

one with the maximum amplitude is copied to the composite pyramid and the fused

image is reconstructed from an inverse pyramid transform. More recently [95], fusion

within a gradient pyramid was shown to provide improved stability and noise immu-

nity.

Wavelet theory has played a particularly important role in multiscale analysis. A num-

ber of papers [25] [26] [27] have addressed fusion algorithms based on the orthogonal

wavelet transform. A general framework for multiscale fusion with wavelet transform

is shown in Figure (6.1). The wavelet transform offers certain advantages over the

Laplacian pyramid-based techniques. Since the wavelet bases are chosen to be orthog-

onal, the information gleaned at different resolutions is unique; on the other hand,

the pyramid decomposition contains redundancy between different scales. Further-

more, a wavelet image representation provides directional information in the high-low,

low-high and high-high bands, while the pyramid representation fails to introduce any

spatial orientation selectivity into the decomposition process. A major drawback in

the recent pursuit of wavelet-based fusion algorithms is due to a lack of a good fu-

sion scheme. Most selection rules so far proposed are in essence more or less similar

to “choose max”, which introduces a significant amount of high frequency noise due

to the sudden switch of the fused wavelet coefficient to that which is maximum of the

source. This high frequency noise is particularly undesirable to visual perception.

In this chapter, we apply a biorthogonal wavelet transform to the pixel level image

fusion. It is possible to construct smooth biorthogonal wavelets of compact support

which are either symmetric or antisymmetric. At the exception of a Haar wavelet, it

has been shown [29] that symmetric orthogonal wavelets are impossible to construct.

Symmetric or antisymmetric wavelets are synthesized with perfect reconstruction fil-

ters having a linear phase. This is a desirable property for image fusion applications.

Unlike the “choose max” type of selection rules, we propose an information theoretic

fusion scheme. For each pixel in a source image, a vector consisting of wavelet coef-

ficients at that pixel position across scales is formed to indicate the “activity” of that
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pixel. We denote these indicator vectors of all the pixels in a source image as its activity

map. A decision map is then obtained by applying an information theoretic divergence

to measure all the source activity maps. To make a reasonable comparison among activ-

ity indicator vectors, we apply our newly proposed divergence measure, Jensen-Rényi

divergence, which is defined in terms of Rényi entropy [5]. Wavelet coefficients of the

fused image are finally selected according to the decision map. Since all the scales, from

fine to coarse, are considered to evaluate the activity at a particular position within an

image, our approach is intrinsically more accurate, in the sense of selecting coefficients

containing the richest information, relative to the “select max” type of fusion schemes.

This chapter is organized as follows. We briefly introduce a biorthognal wavelet rep-

resentation of images in Section II. A concise formulation of the problem is given in

Section III. In Section IV, we describe the information theoretic fusion algorithm and

present some numerical experiments. Finally, we provide concluding remarks in Sec-

tion V.

6.2 Biorthogonal Wavelet Representation of Images

Let f�; ~�g and f ; ~ g be two dual pairs of scaling functions and wavelets which gener-

ate biorthogonal wavelet basis of L2(R). For t = (t1; t2) and n = (n1; n2), we write

�2j;n(t) = �j;n1(t1)�j;n2(t2); (6.1)

 1(t) = �(t1) (t2);  
2(t) =  (t1)�(t2);  

3(t) =  (t1) (t2); (6.2)

~ 1(t) = ~�(t1) ~ (t2); ~ 2(t) = ~ (t1)~�(t2); ~ 3(t) = ~ (t1) ~ (t2): (6.3)

Denote for 1 � k � 3,

 k
j;n(t) =

1

2j
 k

�
t1 � 2jn1

2j
;
t2 � 2jn2

2j

�
(6.4)

and

~ k
j;n(t) =

1

2j
~ k

�
t1 � 2jn1

2j
;
t2 � 2jn2

2j

�
: (6.5)



6.2. BIORTHOGONAL WAVELET REPRESENTATION OF IMAGES 115

It is easy to verify [70] that

f 1
j;n;  

2
j;n;  

3
j;ng(j;n)2Z3

and

f ~ 1
j;n;

~ 2
j;n;

~ 3
j;ng(j;n)2Z3

are biorthogonal bases of L2(R2).

Any f 2 L2(R2) has two possible decompositions in these bases,

f =
X
j

X
n

3X
k=1

< f;  k
j;n > ~ k

j;n =
X
j

X
n

3X
k=1

< f; ~ k
j;n >  k

j;n; (6.6)

where < �; � > denotes an inner product of two functions. Assuming we choose  kj;n as

the analysis wavelets, at any scale 2j, we denote the approximation coefficient

aj[n] =< f; �2j;n >

and the wavelet coefficient

dkj [n] =< f;  k
j;n >; k = 1; 2; 3:

The three wavelets  k extract image details at different scales and orientations. Over

positive frequencies, �̂ and  ̂ have an energy mainly concentrated respectively on lower

and higher frequencies. Let ! = (!1; !2), the separable wavelet expressions implies that

 ̂1(!) = �̂(!1) ̂(!2);  ̂
2(!) =  ̂(!1)�̂(!2);  ̂

3(!) =  ̂(!1) ̂(!2): (6.7)

Hence j ̂1(!)j emphasizes low horizontal frequencies !1 and high vertical frequencies

!2, while j ̂2(!)j is larger at high horizontal frequencies !1 and low vertical frequencies

!2, whereas j ̂3(!)j is larger at both high horizontal frequencies !1 and high vertical

frequencies !2. As a result, wavelet coefficients calculated with  1 and  2 are larger

along edges which are respectively horizontal and vertical, and  3 produces large coef-

ficients at the corners.

The wavelet coefficients at scale 2j+1 are calculated from aj with two dimensional sep-

arable convolutions and subsamplings. Let fh; gg and f~h; ~gg be the perfect reconstruc-

tion filters associated to the biorthogonal wavelet f ; ~ g. For any pair of one-dimensional
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Figure 6.2: A fast biorthogonal two-dimensional wavelet transform (a) and its inverse

transform (b) implemented by perfect reconstruction filter banks.

filters y[n] and z[n], we write the product filter yz[n] = y[n1]z[n2], and denote �y[n] =

y[�n]. For n = (n1; n2),

aj+1[n] = aj ? �h�h[n]; (6.8)

d1j+1[n] = aj ? �h�g[n]; (6.9)

d2j+1[n] = aj ? �g�h[n]; (6.10)

d3j+1[n] = aj ? �g�g[n]; (6.11)

where “?” denotes convolution. A separable two dimensional convolution can be fac-

tored into one-dimensional convolutions along with rows and columns of the image.

The factorization is illustrated in Figure (6.2a). The rows of aj are first convolved with

�h and �g, and subsampled by 2. The columns of these two output images are then con-

volved respectively with �h and �g and subsampled, which yields four subsampled im-

ages aj+1, d1j+1, d2j+1 and d3j+1.

We denote

�y[n] = �y[n1; n2] =

8<
: y[k1; k2] ; n1 = 2k1; n2 = 2k2

0 ; otherwise
;

the image obtained by inserting a row of zeros and a column of zeros between pairs of

consecutive rows and columns of y[n1; n2]. aj is recovered from the coarser scale ap-

proximation aj+1 and the wavelet coefficients d1j+1, d
2
j+1 and d3j+1 with two-dimensional
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separable convolutions

aj[n] = �aj+1 ? ~h~h[n] + �d1j+1 ?
~h~g[n] + �d2j+1 ? ~g

~h[n] + �d3j+1 ? ~g~g[n]: (6.13)

These four convolutions can also be factored into six groups of one-dimensional con-

volutions along rows and columns, as illustrated in Figure (6.2b).

Let aJ [n] be a digital image whose pixel interval equals to 2J = N�1. A biorthogonal

wavelet image representation of aJ of depth L � J is computed by iterating Equation

(6.8-6.11) for J < j � L:

fd1j ; d2j ; d3j ; aLgJ<j�L: (6.14)

The original digital image aJ is recovered from this wavelet representation by iterating

the reconstruction Equation (6.13) for J < j � L.

6.3 Problem Formulation

Let f1; f2; :::; fn : Z2 ! R be digital images of the same scene taken from different sen-

sors. For the pixel level image fusion problem, we assume all the source images are

registered so that the difference in resolution, coverage, treatment of a theme, char-

acteristics of the image acquisition methods are eliminated. The goal of our fusion

algorithm is to construct a composite image such that information captured in all the

source images are combined and the source image data is hence compressed. To achieve

this goal, we apply an information theoretic fusion approach based on a biorthogonal

wavelet representation.

Definition 6.1 Let Wfi = fd1i (j;n); d2i (j;n); d3i (j;n); ai(L;n)g0<j�L;n2Z2; i = 1; 2; :::n be

a biorthogonal wavelet image representation of fi as defined in equation (6.14). With no loss of

generality, we set J = 0. For any n 2 Z
2, an activity pattern vector is defined as

Ai(n) =

"
3X

k=1

jdki (1; 2L�1n)j2;
3X

k=1

jdki (2; 2L�2n)j2; :::;
3X

k=1

jdki (L;n)j2
#
; (6.15)
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which is a (1 � L) vector of energy concentrated at pixel fi(2Ln) across scales. We refer to

fAi(n)gn2Z2 as the activity map of source image fi; i = 1; 2; :::n.

Activity maps characterize the inherent information pattern in source images. To fuse

the source wavelet coefficients, it is necessary to compare the activity patterns for every

pixel. For instance, if the activity patterns are different in some region, taking the av-

erage of wavelet coefficients to generate a composite image is not a good choice, since

it would create artifacts. On the other hand, if the activity patterns are similar for that

region, taking the average would inject more information to the fused image due to the

contribution from different sources.

A reasonable measure for activity patterns should satisfy the following properties:

� It should be capable of measuring the difference between two or more activity

patterns.

� It should be nonnegative and symmetric.

� It should vanish to zero if and only if the activity patterns are the same.

� It should reach the maximum value when activity patterns are degenerate distri-

butions.

In Chapter 3, we proposed a new information divergence measure, referred to as Jensen-

Rényi divergence, which satisfies the above requirements. A decision map is then gen-

erated by applying the Jensen-Rényi divergence to measure the coherence of source

activity maps at the pixel level. We further segment the decision map into two regions,

D0 and D1. D0 is the set of pixels whose activity patterns are similar in all the source

images, while D1 is the set of pixels whose activity patterns are different. Our fusion

scheme is to find the solution to the following optimization problem.

Wf = arg min
Wf2F

8<
:

nX
i=1

0
@ LX

j=1

X
2jn2D0

jWf(j;n)�Wfi(j;n)j2
1
A�

LX
j=1

X
2jn2D1

jWf(j;n)j2
9=
; ;

(6.16)
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where F is the set of all the images f whose wavelet transform satisfies

min
i
(Wfi(j;n)) � Wf(j;n) � max

i
(Wfi(j;n));

for any 0 < j � L and n 2 Z
2. This constraint makes sure that the solution stays in the

closure of F , i.e., no image outside the scenario we are contemplating.

6.4 Image Fusion with Jensen-Rényi divergence

The goal of image fusion is to integrate complementary information from multi-sensor

data such that the fused images are more suitable for the purpose of human visual per-

ception. Let f1; f2; :::fn : Z2 ! R be the digital images generated by different sensors.

Our information theoretic fusion approach first calculates a biorthogonal wavelet im-

age representation for each fi, then a pixel level activity map fAi(n)gn2Z2 is formed, as

described in Section III. Denote k � k as l1 norm, for any n 2 Z
2, we define a normalized

activity pattern

pi(n) =

8<
: Ai(n)=kAi(n)k ; kAi(n)k 6= 0

�1 ; kAi(n)k = 0

where �1 = [1; 0; :::0] is a (1 � L) degenerate distribution. To fuse the source wavelet

coefficients, we compare the normalized activity patterns of all the source images in

terms of Jensen-Rényi divergence, and create a selection map fS(n)gn2Z2 :

S(n) = JR!� (p1(n); :::;pn(n)) : (6.17)

The selection map is further segmented into two decision regions, D0 and D1. Set T to

be the mean value of selection map, we write

D0 = fn 2 Z
2 : S(b2�Lnc) < Tg

and

D1 = fn 2 Z
2 : S(b2�Lnc) � Tg;
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where bxc denotes the integer part of x.

Since D0 \D1 = ;, the solution to Equation (6.16) can be obtained by searching for each

wavelet coefficient of the fused image individually. Let f be a composite image defined

by its wavelet coefficients

Wf = fd1f(j;n); d2F (j;n); d3f(j;n); af (L;n)g0<j�L;n2Z2;

where

akf(L;n) =

8<
: (1=n)

Pn
i=1 a

k
i (L;n); 2Ln 2 D0

max(aki (L;n)); 2Ln 2 D1

;

and for k = 1; 2; 3,

dkf(j;n) =

8<
: (1=n)

Pn
i=1 d

k
i (j;n); 2jn 2 D0

max(dki (j;n)); 2jn 2 D1

:

It is thus easy to verify that f satisfies our fusion criteria (6.16).

Four examples, including multi-sensor navigation image fusion, multi-modality med-

ical image fusion, multi-spectral remote sensing image fusion, and multi-focus optical

image fusion are now presented to illustrate the fusion scheme defined above.

6.4.1 Multi-Sensor Image Fusion

To help helicopter pilots navigate under poor visibility conditions, such as fog or heavy

rain, helicopters are equipped with several imaging sensors, which can be viewed by

the pilot in a helmet mounted display. A typical sensor suite includes both a low-light-

television (LLTV) sensor and a thermal imaging forward-looking-infrared (FLIR) sen-

sor. In the current configuration, the pilot can choose one of the two sensors to watch

in his display. Sample LLTV and FLIR images are shown in Figure (6.3.1) and (6.3.2)

respectively. A possible improvement is to combine both imaging sources into a single

fused image.

Image fusion by standard techniques such as pixel averaging and multiscale based

maximum selection scheme are shown in Figure (6.3.3) and (6.3.4) respectively. Note

that the pixel averaging method has a muddy appearance. This is due primarily to the
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fact that averaging results in reduced contrast for all the patterns which appear in only

one source. On the other hand, maximum selection scheme produces some mosaic like

artifacts due to the high frequency noise introduced by a sudden switch between two

sets of source wavelet coefficients. Image fusion with our multiscale information theo-

retic approach is illustrated in Figure (6.3.6). As we can see, all the significant features

from both sources are retained in the fused image without suffering from artifacts.

6.4.2 Multi-Modality Image Fusion

With the development of new imaging methods in medical diagnostics arises the need

of meaningful and spatial correct combination of all available image datasets. Examples

for imaging devices include computer tomography (CT), magnetic resonance imaging

(MRI) or the newer positron emission tomography (PET). Image fusion of a CT (Fig-

ure 6.4.1) and a MRI (Figure 6.4.2) image with our multiscale information theoretic

approach is illustrated in Figure (6.4.6). For comparison purpose, fusion by pixel aver-

aging and by multiscale based maximum selection scheme are shown in Figures (6.4.3)

and (6.4.4).

6.4.3 Multi-Spectral Image Fusion

Image fusion is often involved in remote sensing: modern spectral sensors gather up

to several hundreds of spectral bands which can be either visualized and processed in-

dividually, or can be fused into a single image, depending on the image analysis task.

Image fusion of two bands from a multispectral sensor with our multiscale informa-

tion theoretic approach is illustrated in Figure (6.5). For comparison purpose, fusion

by pixel averaging and by multiscale based maximum selection scheme are shown in

Figures (6.5.3) and (6.5.4).
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6.4.4 Multi-Focus Image Fusion

Due to the limited depth-of-focus of optical lenses, it is often impossible to get an image

which contains all relevant objects ’in focus’. One possibility to overcome this problem

is to take several pictures with different focus points and combine them together into

a single frame which finally contains the focused regions of all input images. Figure

(6.6) illustrates our multiscale information theoretic fusion approach. For comparison

purpose, fusion by pixel averaging and by multiscale based maximum selection scheme

are shown in Figures (6.6.3) and (6.6.4).

6.4.5 Performance Measures

It is difficult to define a general performance measure for fusion algorithms. Some per-

formance metrics which are widely used in signal and image processing do not fit the

application of image fusion. One such example is mean square error. Let f1; f2; :::; fn :

[1; N ]� [1;M ]! R be digital images of the same scene taken from different sensors and

f be the fusion result. A cost function characterizing the mean square error between

the fused image and source inputs may be defined as

� =
1

n

nX
i=1

kf � fik2 (6.18)

where k � k denote l2 norm. It is easy to find out that fusion by pixel averaging, i.e.

fa =
1

n

nX
i=1

fi; (6.19)

minimizes this cost. However, a pixel averaging method is not accepted as the best

fusion scheme [23]. It is noted earlier that pixel averaging has a muddy appearance.

This is due primarily to the fact that averaging results in reduced contrast for all the

patterns which appear in only one source and a mixture of different patterns which

come from different sources.

Another possible candidate of performance measure for image fusion is the correlation

between the fused image and all the source inputs. The higher correlation, the better



6.4. IMAGE FUSION WITH JENSEN-RÉNYI DIVERGENCE 123

C(f1; f2) C(f1; fa) C(f2; fa) C(f1; fm) C(f2; fm) C(f1; fo) C(f2; fo)

C(f1; fa) + C(f2; fa) C(f1; fm) + C(f2; fm) C(f1; fo) + C(f2; fo)

Multi- 0:0498 0:5752 0:8457 0:4281 0:8703 0:4867 0:8405

modality 1:4208 1:2985 1:3272

Multi- �0:0739 0:5790 0:7703 0:7928 0:3991 0:7663 0:4455

sensor 1:3493 1:1919 1:2118

Multi- 0:8089 0:9501 0:9519 0:8959 0:9345 0:9231 0:9332

spectral 1:9020 1:8303 1:8563

Multi- 0:9542 0:9884 0:9886 0:9791 0:9766 0:9871 0:9778

focus 1:9770 1:9557 1:9649

Table 6.1: Correlations between different fusion results and source images. f1; f2 denote

two source images. fa; fm; fo denote fusion outputs by pixel averaging, wavelet-based

maximum selection and the proposed method respectively.

performance. Let f; g : [1; N ] � [1;M ] ! R denote two digital images. The correlation

between f and g is defined as

C(f; g) =

PN
i=1

PM
j=1(f(i; j)� �f)(g(i; j)� �g)qPN

i=1

PM
j=1(f(i; j)� �f)2

PN
i=1

PM
j=1(g(i; j)� �g)2

(6.20)

where �f; �g stands for the mean value of f; g respectively. Then a performance metric

based on correlation may be defined as

� =

nX
i=1

jC(f; fi)j: (6.21)

where f is the fusion output and fi’s are source images. However, maximizing correla-

tion is closely related to minimizing the mean square error. Fusion by pixel averaging

usually maximizes the overall correlation given by Equation (6.21). Table (6.1) lists the

correlations between different fusion outputs and source images in the experiments of

multi-sensor, multi-modality, multi-spectral and multi-focus image fusion. Following

the same argument for the cost function of mean square error, we conclude that corre-

lation is also not a good choice to measure the performance of image fusion.
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If the “ground truth” of the fusion result is known, we can perform a quantitative per-

formance measure to compare different fusion algorithms. For the above experiment of

multi-focus fusion, an ideal image should contain both well focused clocks and it may

be constructed manually by cut and paste, as demonstrated in Figure (6.6.5).

Let fd; f : [1; N ] � [1;M ] ! R denote the ideal image and fusion result respectively. A

performance measure � can be defined as the standard deviation of the error between

fd and f ,

� =

sPN
i=1

PM
j=1 jfd(i; j)� f(i; j)j2

NM
: (6.22)

Table (6.2) summarizes the standard deviation between an ideal image and fusion re-

sults by different algorithms. The proposed information theoretic approach clearly gen-

erates a fusion result that is the closest to the ideal image among the outputs of the pixel

averaging and wavelet-based maximum selection scheme.

It has to be pointed out that this method is restricted to specially constructed images

and generally not applicable to real multi-sensor data where the ideal fusion is ill-

defined and cannot be obtained. There is no general quantitative performance measure

for image fusion algorithms in the current literature except for specific applications [96].

The fusion results are mostly evaluated visually.

pixel averaging maximum selection proposed algorithm

� 7:816 10.794 6.573

Table 6.2: Standard deviation between an ideal image and fusion results by different

algorithms.

6.5 Conclusion

In this chapter, we derive a new multiscale image fusion algorithm, which aims at in-

tegrating complementary information from multi-sensor data so that the fused images
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are more suitable for visual perception. We formulate the image fusion as an optimiza-

tion problem to which we propose a solution.

As a first step, a biorthogonal wavelet transform of each source image is calculated to

generate a scale space representation. Biorthogonal wavelets can be synthesized with

perfect reconstruction filters having a linear phase, which is a desirable property for

image fusion applications.

In contrast to the “choose max” type of selection rules, our proposed technique relies

on the intrinsic statistical structure. Using spatially specific wavelet coefficients from

fine to coarse scales, we construct activity pattern vectors which we compare using a

new Jensen-Rényi divergence. The resulting decision map makes our approach more

effective in preserving significant features from all the sources without suffering from

artifacts.

We have successfully tested the new scheme on fusion of multi-sensor (low-light-television

and forward-looking-infrared), multi-modality (CT and MRI), multi-spectral, and multi-

focus images. Quantitative performance measure for fusion of synthetic test images

and visual evaluation for real multi-sensor image fusion demonstrates that the pre-

sented algorithm clearly outperforms pixel averaging and wavelet based maximum

selection fusion schemes.
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(1) (2)

(3) (4)

(5) (6)

Figure 6.3: Multi-sensor image fusion: (1) a low-light-television sensor image; (2) a

forward-looking-infrared image; (3) fusion by averaging; (4) fusion by wavelet based

maximum selection scheme; (5) a selection map; (6) fusion by the proposed information

theoretic approach.
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(1) (2)

(3) (4)

(5) (6)

Figure 6.4: Multi-modality image fusion: (1) a CT image; (2) a MRI image; (3) fusion by

averaging; (4) fusion by wavelet based maximum selection scheme; (5) a selection map;

(6) fusion by the proposed information theoretic approach.
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(1) (2)

(3) (4)

(5) (6)

Figure 6.5: Multi-spectral image fusion: (1) a high resolution remote sensing image; (2)

a low resolution remote sensing image; (3) fusion by averaging; (4) fusion by wavelet

based maximum selection scheme; (5) a selection map; (6) fusion by the proposed in-

formation theoretic approach.
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(1) (2)

(3) (4)

(5) (6)

Figure 6.6: Multi-focus image fusion: (1) an image focused on the larger clock; (2) an

image focused on the smaller clock; (3) fusion by averaging; (4) fusion by wavelet based

maximum selection scheme; (5) a perfectly fused image obtained by manually cut and

paste; (6) fusion by the proposed information theoretic approach.
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CHAPTER

7
Shape Recognition

T
HE geometrical description of an object can be decomposed into registration and

shape information. For example, an object’s location, rotation and size could be

the registration information and the geometrical information that remains is the shape

of the object. An object’s shape is invariant under registration transformations and two

objects have the same shape if they can be registered to match exactly.

The pioneers of this topic of general shape and registration analysis are Kendall [30]

and Bookstein [31]. Some reference and reviews include Goodall [32], Kent [33], Dry-

den and Mardia [34].

The definition of general shape spaces and shape distance is introduced in Section 7.1.

In Section 7.2 we describe the matching of two configurations under Euclidean simi-

larity transformations. In Section 7.3 we briefly describe the matching of two config-

urations under affine transformations. We extend the work to consider the robustness

issues and matching by estimation in Section 7.4.

131
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7.1 Shape Space and Shape Distance

In this section, we investigate further geometrical aspects of shape. First we introduce

the concepts of a shape configuration and of a pre-shape space.

Definition 7.1 A configuration X consists of k labeled points in a m-dimensional Euclidean

space.

Two configurations, X and Y , have the same general shape if Y = g(X); g 2 G: G is the

set of Euclidean transformations, including translation, rotation and isotropic scaling,

which is given by

Y = rX� + 1kc
T : r 2 R

+ ;� 2 SO(m); c 2 R
m (7.1)

where c is a translation m-vector, 1k is k-vector of ones, � is a m�m orthogonal matrix

with det(�) = 1 and r > 0 denotes an isotropic scaling.

In order to represent shape, it is convenient to remove similarity transforms one at a

time. Translation is the easiest to filter out of X and can be achieved following its

product by a Helmert sub-matrix.

XH = HX 2 R
(k�1)mnf0g (7.2)

A Helmert sub-matrix H is a (k � 1) � k Helmert matrix without its first row. A full

Helmert matrix HF is a square k� k orthogonal matrix with its first row element equal

to 1=
p
k, and the remaining rows are orthogonal to the first row. We drop the first row

of HF , so that the transformed HX does not depend on the original locations of the

configuration.

Definition 7.2 The jth row of the Helmert sub-matrix H is given by

(hj; hj; :::hj;�jhj; 0; :::0); hj = �(j(j + 1))�1=2 (7.3)

so that the jth row consists of hj repeated j times, followed by �jhj and then k � j � 1 zeros,

j = 1; 2; :::k � 1.
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For example, a full Helmert matrix for k = 3 is

HF =

2
6664

1=
p
3 1=

p
3 1=

p
3

�1=p2 1=
p
2 0

�1=p6 �1=p6 2=
p
6

3
7775 ;

while its corresponding Helmert sub-matrix is

H =

2
4 �1=p2 1=

p
2 0

�1=p6 �1=p6 2=
p
6

3
5 :

The pre-shape of a configuration matrix X has all the information about location and

scale removed.

Definition 7.3 The pre-shape of a configuration matrix X is given by

Z =
XH

k XH k =
HX

k HX k (7.4)

where H is a Helmert sub-matrix. The pre-shape is invariant under translation and scaling of

the original configuration.

Notice that a pre-shape of configuration X has a dimension of (k � 1)m � 1. In order

to remove rotation information from the configuration, we identify all rotated versions

of the pre-shape with each other, and this equivalence class is the shape of X . An

alternative definition of the shape of X is given by the following definition.

Definition 7.4 The shape of a configuration matrix X is all the geometrical information about

X that is invariant under Euclidean similarity transformations, i.e., location, rotation and

isotropic scaling. The shape can be represented by the set [X] given by

[X] = fZ� : � 2 SO(m)g (7.5)

where SO(m) is the orthogonal group of rotations and Z is the pre-shape of X .
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Definition 7.5 The shape space [97] is the set of all the possible shapes. Formally, the shape

space
Pk

m is the orbit space of the non-coincident k-point set configurations in R
m under the

action of the Euclidean similarity transformations.

A suitable distance in
Pm

k is the full Procrustean distance. Consider two configuration

matrices X1 and X2 with pre-shapes Z1 and Z2, we minimize over rotations and scale

to find the closest Euclidean distance between Z1 and Z2.

Definition 7.6 The full Procrustean distance [34] between X1 and X2 is given by

dF (X1; X2) = inf
�2SO(m);�2R

kZ2 � �Z1�k (7.6)

It can be shown [30] that

dF (X1; X2) = inf
�2SO(m);�2R

kZ2 � �Z1�k

=
p
1� [trace(�)]2

= sin�: (7.7)

where � is a Riemannian metric, which is given by

�(Z1; Z2) = arccos(trace(�)); (7.8)

where the matrix � is the diagonal m � m matrix with the positive elements given by

the square root of the eigenvalues of ZT
1 Z2Z

T
2 Z1, except the smallest diagonal element

which is negative if we have det(ZT
2 Z1) < 0.

Another general shape space of interest is the affine shape space. The set of affine

transformations of a configuration X(k �m matrix) is given by

fXA+ 1kc
T : A 2 GL(m)g;

where A is a m � m matrix in the general linear group of invertible m � m matrices

GL(m), and c is a translation m-vector. Note if k � m + 1 all the configurations have

the same affine shape, so we require k > m + 1 for non-trivial affine shape.
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Definition 7.7 The affine shape space is the orbit space of the non-coincident k-point set con-

figurations in R
m under the action of Euclidean affine transformations.

A suitable distance in the affine shape space between X1 and X2 is given by

dA(X1; X2) = inf
A2GL(m);c2R

kX1(X
T
1 X1)

�1=2 � (X2A + 1kc
T )k (7.9)

The post-multiplication of X1 by (XT
1 X1)

�1=2 ensures that dA(X1; X2) = dA(X2; X1).

7.2 Euclidean Shape Matching

Consider configuration of k � m + 1 points in m dimension. To match two configura-

tions Y and T (both k �m matrices), we have

Y = rT� + 1kc
T + E = XB + E (7.10)

where c 2 R
m is a translation m-vector. 1k is the k-vector ones, � is a m � m orthog-

onal matrix with det(�) = 1 and r > 0 denotes an isotropic scaling. E is the k � m

error matrix, which is assumed to be modeled by an independent multivariate normal

distribution. Let X = [1k; T ] be the design matrix, and B = [c; r�]T be the regression

parameters. The most straightforward approach to estimating the regression parame-

ters B is by a least squares approach, i.e., minimizing s2(E) = kEk2 = trace(ETE). To

simplify calculation, we first obtain the pre-shapes of Y and T , denoted by �Y and �T

respectively. In this way, c is set to be 0. Then we have

d2GF (Y; T ) = d2GF (
�Y ; �T )

= inf
�2SO(m);r

�
( �Y � r �T�)T ( �Y � r �T�)

�

= inf
r

 
k �Y k2 + r2k �Tk2 � 2r sup

�2SO(m)

trace( �Y T �T�)

!
(7.11)

Consider a singular value decomposition of �Y T �T given by

�Y T �T = V �UT
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A−10A A−4 A−7 B−13 B−52 Buccaneer F−111

F−4 Mig25 Jaguar Mig−27 Mirage−IV Su−24 Su−7

Tu−22 Tu−26 Viggen Harrier Target

Figure 7.1: A shape database in experiment

where U; V 2 SO(m), � = diag(�1; �2; :::; �m) with �1 � �2; :::;� �m�1 � j�mj. Note

that �m < 0 if and only if det( �Y T �T ) < 0. Hence the last term in the right-hand side of

Equation (7.11) is equivalent to

�2r sup
�2SO(m)

trace(��) = �2r sup
�2SO(m)

mX
i=1

�ii�i;

where (�11;�22; :::;�mm) are the diagonals of �. Note that the set of diagonals of � in

SO(m) is a compact convex set [98] with extreme points

f(�1;�1; :::;�1)g

with an even number of minus signs. Hence it is clear in our case that the supremum is

achieved when �ii = 1, i = 1; 2; :::; m: Therefore,

d2GF (
�Y ; �T ) = inf

r

 
k �Y k2 + r2k �Tk2 � 2r

mX
i=1

�i

!
: (7.12)

By differentiation we obtain

r̂ =

mX
i=1

�i: (7.13)
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It is now clear the minimizing rotation matrix is given by �̂ = UV T since

trace( �Y T �T �̂) = trace(V �UTUV T ) = trace(�):

Based on the above derivation, a suitable symmetric residual discrepancy measure in-

volves the matching of the pre-shapes under Euclidean similarity transformations and

is given by

dGF (Y; T ) = inf k �Y � [1k; �T ][c; r�]
Tk =

p
(1� (trace(�))2): (7.14)

Referring to equation (7.7), we can see that the symmetric residual discrepancy mea-

sure corresponds to a full Procrustean distance in shape space.

An aircraft database of 18 templates and a target configuration we extracted from an

ISAR image are shown in Figure (7.1). The target configuration can be modeled by a

translation of MIG-25 in the database plus some distortions. We center and normalize

it to a pre-shape format. Symmetric discrepancy measures between the target and tem-

plates in database are calculated and listed in the Table (7.1). As we can see, the shape

distance between the target and MIG-25 has the minimal value.

A-4 A-7 A-10 B-13 B-52 Buccaneer

dGF (Y; T ) 0.3416 0.3460 0.4339 0.2776 0.5492 0.2645

F-111 F-4 MIG-25 Jaguar MIG-27 Mirage-IV

dGF (Y; T ) 0.3653 0.3336 0.0501 0.2930 0.2737 0.3837

Su-24 Su-7 Tu-22 Tu-26 Viggen Harrier

dGF (Y; T ) 0.2425 0.3197 0.2491 0.2408 0.4086 0.3086

Table 7.1: Symmetric discrepancy measures between the target and aircraft templates.

7.3 Affine Shape Matching

For k � m + 1 points in R
m , the set of transformations G is the group of affine trans-

formations. Matching two configurations Y and T (both k � m matrices), we have a
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(m+ 1)�m affine transformation matrix B such that

Y = [1k; T ]B + E = XB + E (7.15)

where E is the k�m error matrix, which is assumed to be modeled by an independent

multivariate normal distribution. X = [1k; T ] is the design matrix. The least square

solution is given by

B̂ = (XTX)�1XTY; (7.16)

where we assume the rank of X to be m+ 1. A symmetric discrepancy measure can be

obtained by

dGA(Y; T ) = kY (Y TY )�1=2 �X(XTX)�1XTY k: (7.17)

This measure has the property that

dGA(Y; T ) = dGA(Y; TA+ 1kb
T ) = dGA(T; Y ) = dGA(Y A+ 1kb

T ; T )

assuming T; Y are of rank m, A is a full rank m�m matrix and b is a m-vector.

7.4 Estimation by Matching

If we have N random samples of a object, Tj 2
Pm

k ; j = 1; 2; :::N , then it is of interest

to obtain an average configuration � (a k � m matrix) and to explore the structure of

viability, up to invariance in the set of transformations G.

An estimate of the population mean configuration � up to invariance in G, denoted by

�̂, can be obtained by simultaneously matching each Tj to � (j = 1; 2; :::N) and choosing

� as a suitable estimate (subject to certain constraints on �). In particular, �̂ is obtained

from the constrained minimization

�̂ = arg inf
�

NX
j=1

inf
gj
�(s(gj(Tj)� �)) (7.18)

where �(x) is a penalty function on R
+ , s(E) is the objective function for matching two

configurations, and in general restrictions need to be imposed on � to avoid degener-

acy. A common choice of estimator is �(x) = x2, i.e., a least square choice.
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For the generalized shape matching in two dimensions, given N random sample con-

figurations in the complex plane T1; :::; TN ; (Tj 2 C
k , complex k-vectors), we wish to

obtain an average shape, where the set of transformations G is taken to be the Eu-

clidean similarity group. Upon selecting �(x) = x2 for a least square matching, we let

Xj = [1k; Tj]; j = 1; 2; :::; N be a k � 2 design matrix, and define

�j = ��XjBj;

where Bj are the 2� 1 complex parameters for matching the jth configuration to a com-

plex mean � (a k � 1 complex vector) with � restricted to be centered (��1k = 0) and

having unit size (��� = 1). “ � ” denotes complex conjugate. �j is assumed to be mod-

eled by an independent multivariate normal distribution.

The N configurations can hence be matched using a least square criterion, i.e., mini-

mizing the function
PN

j=1 �j�
�
j over fBjgNj=1 and �. Fixing �, the solution is clearly given

by

B̂j = (X�
jXj)

�1X�
j �; (j = 1; 2; :::N) (7.19)

whereX�
jXj is assumed of rank 2, i.e., the points in Tj are not all coincident. This yields,

�̂ = (Ik �Hj)�; (7.20)

where Hj is the estimated hat matrix for Xj and given by

Hj = Xj(X
�
jXj)

�1X�
j ; (j = 1; 2; :::N):

Consequently, we have [34],

�̂ = arg inf
�
��A�; (7.21)

where A =
PN

j=1(I � Hj). Hence, �̂ is given by a complex eigenvector corresponding

to the smallest non-zero eigenvalue of A, which is equivalent to finding an eigenvector

corresponding to the largest eigenvalue of

S =

NX
j=1

�Tj �Tj
�
; (7.22)
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Figure 7.2: A set of 16 noisy observation of a B-52 shape
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Figure 7.3: Estimated mean configuration of a B-52 shape
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A-4 A-7 A-10 B-13 B-52 Buccaneer

dGF (Y; T ) 0.4792 0.4091 0.3661 0.5675 0.0081 0.4249

F-111 F-4 Harrier Jaguar MIG-27 Mirage-IV

dGF (Y; T ) 0.7045 0.5488 0.5173 0.6030 0.5850 0.7195

Su-24 Su-7 Tu-22 Tu-26 Viggen MIG-25

dGF (Y; T ) 0.4754 0.4936 0.4604 0.5477 0.6974 0.5494

Table 7.2: Shape distances between the estimated mean shape and templates in the

database

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

dGF (Yi; T ) 0.0369 0.0417 0.0393 0.0376 0.0426 0.0399 0.0396 0.0397

Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16

dGF (Yi; T ) 0.0389 0.0385 0.0389 0.0408 0.0398 0.0398 0.0392 0.0421

Table 7.3: Shape distances between noisy configurations to the B-52 template.

where �Tj is the pre-shape of Tj. The shape corresponding to this eigenvector is hence

the unique least square estimate provided that there is a single greatest eigenvalue. The

average shape from this procedure is called the full procrustean mean.

Figure (7.2) shows a set of noisy configurations (128 � 1 complex vectors) of B-52.

The estimated mean shape calculated by Equation (7.21) is shown in Figure (7.3). Table

(7.2) lists the shape distances between the estimated mean shape and templates in the

aircraft database. Table (7.3) lists the shape distances between noisy configurations to

the B-52 template. It’s clear that matching by way of a mean shape has a better result.
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CHAPTER

8 Conclusions and Dis-

cussions

I
N this chapter, we briefly summarize the contributions of this thesis and the overall

conclusions which can be derived from the results of our research. We also present

some suggestions for extending this work.

8.1 Conclusions

The main contributions of this thesis can be categorized as follows:

� Information theoretic approach for ISAR image focusing and multiscale data fu-

sion

A new generalized divergence measure, the Jensen-Rényi divergence, is proposed. We

prove the convexity of this divergence measure, derive its maximum value, and an-

alyze its upper bounds in terms of the Bayes error in statistical pattern recognition.

Based on the Jensen-Rényi divergence, we propose a new approach to the problem of

143
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ISAR image registration. This is accomplished by using the Jensen-Rényi divergence to

measure the statistical dependence between consecutive ISAR image frames, which is

maximal if the images are geometrically aligned. Compared to the mutual information

based registration techniques, the Jensen-Rényi divergence provides an ability to con-

trol the measurement sensitivity of the joint histogram. This flexibility results in more

robust registration in the presence of noise. Maximization of the Jensen-Rényi diver-

gence is a very general criterion, because no assumptions are made in regards to the

nature of this dependence and no limiting constraints are imposed on image contents.

Simulation results demonstrate that our approach achieves an effective estimation of

the target motion automatically without any prior feature extraction. Based on the es-

timated motion parameters, translational motion compensation (TMC), and rotational

motion compensation (RMC) can be used to generate a focused image of the target.

In order to integrate complementary information from multi-sensor data so that the

fused images are more suitable for visual perception and recognition, we derive a new

information theoretic fusion scheme in a multiscale framework. We formulate the im-

age fusion as an optimization problem for which we propose a solution. We have suc-

cessfully tested the new scheme on fusion of multi-sensor (low-light-television and

forward-looking-infrared), multi-modality (CT and MRI), multi-spectral, and multi-

focus images. Quantitative performance measure for fusion of synthetic test images

and visual evaluation for real multi-sensor image fusion demonstrates that the pre-

sented algorithm clearly outperforms pixel averaging and wavelet based maximum

selection fusion schemes.

� Multiscale shape enhancement and shape analysis

As a pre-processing step for the shapes extracted from ISAR images, we propose a

novel non-linear smoothness-constrained filtering technique. The key idea is to sepa-

rate the signal portion from its measured data, and to preserve the original smoothness

property of the underlying shape. Using notations of Hölder spaces and Hölder expo-

nent, we establish results of signal regularity measurement with wavelets. To detect
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the singular points of signal from measured data, we turned to curve shortening and

derived the partial differential equations that characterize the evolution of curvature.

A new singularity detection method by tracking the curvature extrema across scales is

proposed and a multiscale curvature mask is generated. Then we proceed to project

measured data into the wavelet domain and suppress wavelet coefficients by this mul-

tiscale curvature mask. For a piecewise smooth signal, it was shown that filtering by

this curvature mask is equivalent to keeping the signal pointwise Hölder exponents at

the singular points of the underlying signal, and to lifting its smoothness at all the re-

maining points.

To identify a shape independently of its registration information, we finally propose

matching two configurations by regression, using notations of general shape spaces

and procrustean distances. In particular, we study the generalized Euclidean and affine

matching by estimating a mean configuration in two dimensions. Simulation results

show that matching by way of a mean configuration is more robust than matching tar-

get shapes directly.

8.2 Suggestions for future research

In this section, we provide some discussions and suggestions for extending the research

presented in this thesis.

� Optimal choice of exponential order for the Jensen-Rényi divergence

A large fraction of our effort in Chapter 3 was focused on searching for a spatial trans-

formation such that a similarity metric achieves its maximum between two images

taken at different times, from different sensors, or from different viewpoints. We pro-

pose a general framework based on the Jensen-Rényi divergence for the purpose of

image registration and establish the optimal choice of weight vector !. For the selec-

tion of exponential order �, there is a trade off between optimality and practicality. We

conclude that � = 0 is best for the ideal case of registration, if one can exactly model
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the misalignment between two images. It is, however, also the least robust selection, as

it tends to make all the p0is the same as the uniform distribution, if pi is not degenerate

distribution and pij > 0. Then the Jensen-Rényi divergence would be zero for the whole

transformation parameter space as in case where the adapted transformation group can

not completely model the misalignment. On the other hand, � = 1 is the most robust

choice, in spite of also resulting in the least sharp peak. In the future work, I would

suggest formulating a cost function over � and solving its optimal value by minimiz-

ing that cost function. The difficulty is to find such a cost function that it is convex in �

and also reasonable for a specific application.

� Registration in the presence of local variation

For the purpose of ISAR image focusing, local variations may be presented in the con-

secutive image frames due to the target motion and other perturbations. If such local

variations are severe, a global transform and a local deformation may be used together

to aid the Jensen-Rényi divergence to identify the registration point. Even though in the

motion compensation stage, the local transformation is not required. The local defor-

mation would also help to determine the maximal integration angle, since it indicates

the projection variation of target reflectivity density onto the imaging plane. Given two

ISAR image frames f1 and f2, an estimate of target motion parameters (l�; ��; �) is then

given by

(l�; ��; �) = arg max
(l;�;)

DJR!�

�
f1; g(T(l;�;)f2)

�
where DJR!�

(�) is an induced similarity measure based on Jensen-Rényi divergence of

order � and weight !. g is a local deformation. A good candidate for such a local

deformation is a thin-plate spline [34]. The thin-plate spline is a natural interpolating

function for data in two dimensions and plays a similar role to the natural cubic spline

in the one dimensional case. It minimizes the total bending energy of all possible inter-

polation functions [34]. Implementation of a thin-plate spline interpolation is straight

forward. The difficulty could be a robust scheme to select two sets of feature landmarks

to characterize the target in both images. These two sets of landmarks are necessary to
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calculate the parameters in a thin-plate spline interpolation.

� Segmentation techniques to construct decision maps in image fusion

Improving the segmentation techniques to construct a decision map is crucial for mul-

tiscale image fusion. I would suggest applying region growing methods to segment

the selection map in the future research. Region growing methods are well suited for

the selection maps, where borders are difficult to detect. Computation cost used to be a

problem, however, a recently developed fast watershed algorithm by Vincent and Soille

[99] was found to be several hundreds of times faster than several classical algorithms.

Image segmented by region growing methods sometimes contain either too many re-

gions (under-growing) or too few regions (over-growing) as a result of non-optimal

parameter setting. To improve classification results, a variety of post-processors [100]

has been developed. I would also suggest investigating these post-processors to fine

tune the resulting decision map. A well constructed decision map could reduce the

artifacts introduced by switching source wavelet coefficients and hence improve the

quality of the fusion result.
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